Note: Dynamic meso-scale full field surface deformation measurement of heterogeneous materials

2016 ◽  
Vol 87 (3) ◽  
pp. 036108 ◽  
Author(s):  
S. Ravindran ◽  
A. Tessema ◽  
A. Kidane
1997 ◽  
Author(s):  
H. Stahl ◽  
Kevin Stultz ◽  
H. Stahl ◽  
Kevin Stultz

2016 ◽  
Vol 23 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Sze-Wei Khoo ◽  
Saravanan Karuppanan ◽  
Ching-Seong Tan

Abstract Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2106 ◽  
Author(s):  
Jiuchao Zhao ◽  
Anxi Yu ◽  
Yongsheng Zhang ◽  
Xiaoxiang Zhu ◽  
Zhen Dong

Spaceborne multistatic synthetic aperture radar (SAR) tomography (SMS-TomoSAR) systems take full advantage of the flexible configuration of multistatic SAR in the space, time, phase, and frequency dimensions, and simultaneously achieve high-precision height resolution and low-deformation measurement of three-dimensional ground scenes. SMS-TomoSAR currently poses a series of key issues to solve, such as baseline optimization, spatial transmission error estimation and compensation, and the choice of imaging algorithm, which directly affects the performance of height-dimensional imaging and surface deformation measurement. This paper explores the impact of baseline distribution on height-dimensional imaging performance for the baseline optimization issue, and proposes a feasible baseline optimization method. Firstly, the multi-base multi-pass baselines of an SMS-TomoSAR system are considered equivalent to a group of multi-pass baselines from monostatic SAR. Secondly, we establish the equivalent baselines as a symmetric-geometric model to characterize the non-uniform characteristic of baseline distribution. Through experimental simulation and model analysis, an approximately uniform baseline distribution is shown to have better SMS-TomoSAR imaging performance in the height direction. Further, a baseline design method under uniform-perturbation sampling with Gaussian distribution error is proposed. Finally, the imaging performance of different levels of perturbation is compared, and the maximum baseline perturbation allowed by the system is given.


2019 ◽  
Vol 275 ◽  
pp. 03009
Author(s):  
Kun Zhou ◽  
Linhua Chen ◽  
Shanshan Yu

Image measurement technology has been widely used in monitoring the deformation of the soil field around the pile with its advantages of no damage, no contact, full-field measurement, no added quality and high sensitivity. But there are few researches on image-based bearing deformation measurement of the pile. Through an indoor pile-soil semi-model test, the rigid body displacement and load-bearing deformation of a new type of prefabricated steel tube pile foundation under horizontal load was measured based on image features. In this study, the concept of optical extensometer is first applied to the measurement of local average strain of a non-uniform deformed structure. Based on an improved feature point tracking algorithm SURF-BRISK, non-contact measurement of tiny strain of pile body is realized. In addition, based on DIC technology, this study also obtained the progressive development of displacement field of soil around pile. The above work fully reflects the non-contact convenience and full-field richness of the optical measurement method compared with the traditional measurement method.


Sign in / Sign up

Export Citation Format

Share Document