Crossed beam energy transfer: Assessment of the paraxial complex geometrical optics approach versus a time-dependent paraxial method to describe experimental results

2016 ◽  
Vol 23 (3) ◽  
pp. 032118 ◽  
Author(s):  
A. Colaïtis ◽  
S. Hüller ◽  
D. Pesme ◽  
G. Duchateau ◽  
V. T. Tikhonchuk
Author(s):  
E. de Langre ◽  
J. L. Riverin ◽  
M. J. Pettigrew

The time dependent forces resulting from a two-phase air-water mixture flowing in an elbow and a tee are measured. Their magnitudes as well as their spectral contents are analyzed. Comparison is made with previous experimental results on similar systems. For practical applications a dimensionless form is proposed to relate the characteristics of these forces to the parameters defining the flow and the geometry of the piping.


2003 ◽  
Vol 15 (10) ◽  
pp. 1285-1317 ◽  
Author(s):  
CLOTILDE FERMANIAN KAMMERER

We study the time-dependent Schrödinger equation with matrix-valued potential presenting a generic crossing of type B, I, J or K in Hagedorn's classification. We use two-scale Wigner measures for describing the Landau–Zener energy transfer which occurs at the crossing. In particular, in the case of multiplicity 2 eigenvalues, we calculate precisely the change of polarization at the crossing. Our method provides a unified framework in which codimension 2, 3 or 5 crossings can be discussed. We recover Hagedorn's result for wave packets, from Wigner measure point of view, and extend them to any data uniformly bounded in L2. The proof is based on a normal form theorem which reduces the problem to an operator-valued Landau–Zener formula.


KnE Energy ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Yu Penionzhkevich ◽  
Yu Sobolev ◽  
V Samarin ◽  
M Naumenko

The paper presents the results of measurement of the total cross sections for reactions 4,6He + Si and 6,7,9Li + Si in the beam energy range 5−50 A⋅MeV. The enhancements of the total cross sections for reaction 6He + Si compared with reaction 4He + Si, and 9Li + Si compared with reactions 6,7Li + Si have been observed. The performed microscopic analysis of total cross sections for reactions 6He + Si and 9Li + Si based on numerical solution of the time-dependent Schrödinger equation for external neutrons of projectile nuclei 6He and 9Li yielded good agreement with experimental data.


Author(s):  
M. Caplan ◽  
W.A. Bongers ◽  
M. Valentini ◽  
W.H. Urbanus ◽  
A.G.A. Verhoeven ◽  
...  

2005 ◽  
Vol 128 (2) ◽  
pp. 359-369 ◽  
Author(s):  
Rafael Ballesteros-Tajadura ◽  
Sandra Velarde-Suárez ◽  
Juan Pablo Hurtado-Cruz ◽  
Carlos Santolaria-Morros

In this work, a numerical model has been applied in order to obtain the wall pressure fluctuations at the volute of an industrial centrifugal fan. The numerical results have been compared to experimental results obtained in the same machine. A three-dimensional numerical simulation of the complete unsteady flow on the whole impeller-volute configuration has been carried out using the computational fluid dynamics code FLUENT®. This code has been employed to calculate the time-dependent pressure both in the impeller and in the volute. In this way, the pressure fluctuations in some locations over the volute wall have been obtained. The power spectra of these fluctuations have been obtained, showing an important peak at the blade passing frequency. The amplitude of this peak presents the highest values near the volute tongue, but the spatial pattern over the volute extension is different depending on the operating conditions. A good agreement has been found between the numerical and the experimental results.


2003 ◽  
Vol 18 (30) ◽  
pp. 2083-2098
Author(s):  
Gabriella Sciolla

Recent measurements of time-dependent CP-asymmetries at the B-factories have led to substantial progress in our understanding of CP-violation. In this paper, we review some of these experimental results and discuss their implications in the Standard Model and their sensitivity to New Physics.


2008 ◽  
Author(s):  
D. E. Greenfield ◽  
M. A. Monastyrskiy ◽  
V. I. Lozovoi ◽  
M. Ya. Schelev ◽  
Yu. N. Serdyuchenko

Sign in / Sign up

Export Citation Format

Share Document