Study of the effect of essential oil of Salvia glutinosa L. on microbial biofilm formation by clinical isolates of Acinetobacter baumannii

2016 ◽  
Author(s):  
Uğur Tutar
Author(s):  
Pakhshan A. Hassan ◽  
Adel K. Khider

Acinetobacter baumannii is an opportunistic pathogen that is reported as a major cause of nosocomial infections. The aim of this study was to investigate the biofilm formation by A. baumannii clinical and soil isolates, to display their susceptibility to 11 antibiotics and to study a possible relationship between formation of biofilm and multidrug resistance. During 8 months period, from June 2016 to January 2017, a total of 52 clinical and 22 soil isolates of A. baumannii were collected and identified through conventional phenotypic, chromo agar, biochemical tests, API 20E system, and confirmed genotypically by PCR for blaOXA-51-like gene. Antibiotic susceptibility of isolates was determined by standard disk diffusion method according to Clinical and Laboratory Standard Institute. The biofilm formation was studied using Congo red agar, test tube, and microtiter plate methods. The clinical isolates were 100% resistance to ciprofloxacin, ceftazidime, piperacillin, 96.15% to gentamicin, 96.15% to imipenem, 92.31% to meropenem, and 78.85% to amikacin. The soil A. baumannii isolates were 100% sensitive to imipenem, meropenem, and gentamicin, and 90.1% to ciprofloxacin. All A. baumannii isolates (clinical and soil) were susceptible to polymyxin B. The percentage of biofilm formation in Congo red agar, test tube, and microtiter plate assays was 10.81%, 63.51%, and 86.48%, respectively. More robust biofilm former population was mainly among non-MDR isolates. Isolates with a higher level of resistance tended to form weaker biofilms. The soil isolates exhibited less resistance to antibiotics than clinical isolates. However, the soil isolates produce stronger biofilms than clinical isolates.


2013 ◽  
Vol 8 (5) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Andreia F. Duarte ◽  
Susana Ferreira ◽  
Rosário Oliveira ◽  
Fernanda C. Domingues

The increasing incidence of hospital-acquired infections caused by multi-drug resistant pathogens, such as Acinetobacter baumannii, coupled with the low efficacy of drugs and rising treatment costs has created interest in the potential antimicrobial properties of natural products. The main objective of this work was to determine the effect of coriander essential oil on Acinetobacter baumannii in different growth phases, as well as its ability to inhibit the formation or eradication of biofilms. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of coriander oil using a microdilution broth susceptibility assay was determined. The effects of different concentrations of coriander oil (ranging from 0.125 to 4×MIC) on biofilm formation and on established biofilm were tested using 96-well microtiter plates. Crystal violet assay was used as indicator of total biofilm biomass and the biofilm viability was assessed with a XTT staining method. It was found that coriander oil presented significant antibacterial activity against all tested strains of A. baumannii, with MIC values between 1 and 4 μL/mL. The MBC values were the same as the MIC, being an indicator of the bactericidal activity of this essential oil. In what concerns the effect of this essential oil on biofilm formation inhibition was observed of at least 85% of biomass formation by all A. baumannii strains using 2×MIC of coriander oil, in addition to a decrease in the metabolic activity of the cells. After exposure to coriander oil, a decrease in 24 h and 48 h-old biofilm biomass and metabolism was seen for all tested concentrations, even with sub-inhibitory concentrations. Coriander essential oil proved to have a significant antibacterial and anti-biofilm activity and should be considered in the development of future disinfectants to control A. baumannii dissemination.


2018 ◽  
Vol 73 ◽  
pp. 119-120 ◽  
Author(s):  
R. Papa ◽  
I. Bado ◽  
V. Iribarnegaray ◽  
M.J. Gonzalez ◽  
P. Zunino ◽  
...  

2017 ◽  
Vol 30 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Maja Bogdan ◽  
Domagoj Drenjancevic ◽  
Ivana Harsanji Drenjancevic ◽  
Branka Bedenic ◽  
Vlasta Zujic Atalic ◽  
...  

2021 ◽  
Vol Volume 14 ◽  
pp. 2613-2624
Author(s):  
Zhaoyinqian Li ◽  
Zixuan Ding ◽  
Yao Liu ◽  
Xinrui Jin ◽  
Jingling Xie ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ayse Humeyra Taskin Kafa ◽  
Rukiye Aslan ◽  
Cem Celik ◽  
Mursit Hasbek

Abstract Rosemary officinalis L., Pelargonium graveolens L., and Mentha piperita L., essential oils are used by complementary medicine specialists simultaneously with traditional antibiotics for treatment purposes. The chemical composition of essential oils was analyzed by the gas chromatography-mass spectrometry method. In vitro antibacterial and antibiofilm activities of the essential oils were tested against extreme drug-resistant (XDR) colistin-resistant and colistin susceptible Acinetobacter baumannii clinical strains. The synergistic activities between essential oils and colistin antibiotics were investigated by the checkerboard method. The highest antibacterial effect was detected in mint essential oil (2.5–5 μl/ml), followed by pelargonium essential oil (5–20 μl/ml) and rosemary essential oil (5–20 μl/ml). The combination of rosemary essential oil or pelargonium essential oil with colistin showed strong synergistic activity in most of the bacterial strains tested (fractional inhibitory concentration index ≤ 0.5; synergy). As a result of the combination of mint essential oil and colistin, an indifferent effect was observed in only two bacterial strains, and other strains could not be evaluated. No antagonistic effects were observed in any of the tested essential oils. As a result of the effectiveness of the combination, the minimum inhibitory concentration (MIC) values of colistin in XDR-A. baumannii clinical isolates decreased 2–32 fold. Additionally, the sub-MIC concentration of essential oils exhibited an inhibitory effect (48–90%) against the biofilm layer of tested A. baumannii strains.


Sign in / Sign up

Export Citation Format

Share Document