scholarly journals Curing behavior and reaction kinetics of binder resins for 3D-printing investigated by dielectric analysis (DEA)

2016 ◽  
Author(s):  
B. Möginger ◽  
L. Kehret ◽  
B. Hausnerova ◽  
J. Steinhaus
Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3085
Author(s):  
Shuang Yan ◽  
Wolfgang Verestek ◽  
Harald Zeizinger ◽  
Siegfried Schmauder

The curing behavior of a thermosetting material that influences the properties of the material is a key issue for predicting the changes in material properties during processing. An empirical equation can describe the reaction kinetics of the curing behavior of an investigated material, which is usually estimated using experimental methods. In this study, the curing process of an epoxy resin, the polymer matrix in an epoxy molding compound, is computed concerning thermal influence using molecular dynamics. Furthermore, the accelerated reaction kinetics, which are influenced by an increased reaction cutoff distance, are investigated. As a result, the simulated crosslink density with various cutoff distances increases to plateau at a crosslink density of approx. 90% for the investigated temperatures during curing time. The reaction kinetics are derived according to the numerical results and compared with the results using experimental methods (dielectric analysis and differential scanning calorimetry), whereby the comparison shows a good agreement between experiment and simulation.


2020 ◽  
Author(s):  
Camilo A. Mesa ◽  
Ludmilla Steier ◽  
Benjamin Moss ◽  
Laia Francàs ◽  
James E. Thorne ◽  
...  

<p><i>Operando</i> spectroelectrochemical analysis is used to determine the water oxidation reaction kinetics for hematite photoanodes prepared using four different synthetic procedures. Whilst these photoanodes exhibit very different current / voltage performance, their underlying water oxidation kinetics are found to be almost invariant. Lower photoanode performance was found to correlate with the observation of optical signals indicative of charge accumulation in mid-gap oxygen vacancy states, indicating these states do not contribute directly to water oxidation.</p>


2003 ◽  
Author(s):  
David J. McGarvey ◽  
H. D. Durst ◽  
William R. Creasy ◽  
Jill L. Ruth ◽  
Kevin M. Morrissey

1980 ◽  
Vol 45 (12) ◽  
pp. 3402-3407 ◽  
Author(s):  
Jaroslav Bartoň ◽  
Vladimír Pour

The course of the conversion of methanol with water vapour was followed on a low-temperature Cu-Zn-Cr-Al catalyst at pressures of 0.2 and 0.6 MPa. The kinetic data were evaluated together with those obtained at 0.1 MPa and the following equation for the reaction kinetics at the given conditions was derived: r = [p(CH3OH)p(H2O)]0.5[p(H2)]-1.3.


Sign in / Sign up

Export Citation Format

Share Document