scholarly journals Combustion and emission analysis of heavy-duty vehicle diesel engine

Author(s):  
Zhixin Sun ◽  
Xue Wang ◽  
Xiancheng Wang ◽  
Jingkai Zhou
2007 ◽  
Author(s):  
Zhaowen Wang ◽  
Ronghua Huang ◽  
Xiaobei Cheng ◽  
Yiwei Huang ◽  
Jun Qin ◽  
...  

Author(s):  
Zhaowen Wang ◽  
Ronghua Huang ◽  
Xiaobei Cheng ◽  
Yiwei Huang ◽  
Jie Shen ◽  
...  

The paper has explored the solutions to the thermal overload in the cylinder head of a heavy-duty vehicle 6-cylinder diesel engine and the thermal cracks in the valve-bridge of the engine. The experiments include measuring the temperature of the cylinder head bottom and testing the flow distribution of coolant through the upper nozzles of cylinder head bottom. The follow-up analysis was conducted on the causes of the excessive thermal load of the cylinder head bottom, the thermal cracks in the valve-bridge region, and the rationality of the structure of the water jacket for the cylinder head. The mechanism of the water jacket of cylinder head was further inquired. Then 3-D CFD numerical simulation of water jacket in the sixth cylinder, which is in the worst cooling condition, is performed. To enhance the flow form in water jacket and lower the cost of enhancement, we proposed 4 schemes of water jacket and conducted the numerical simulations to these schemes. It was identified that all these schemes have efficiently improved the flow field in water jacket. In the typical proposed scheme 1 in which 6 nozzles of all the 10 upper nozzles were blocked, the coolant flow rate on the bottom of the water jacket and in the cylinder head valve-bridge region increased by about 68.73%. The measuring results of the cylinder head bottom temperature show that the maximum temperature in the valve-bridge region of cylinder head is reduced by 9.2 °C and the temperature gradient reduction is 19.55 percent, suggesting that the thermal load and thermal stress of the studied diesel engine cylinder head has been significantly lowered.


2021 ◽  
Vol 268 ◽  
pp. 01020
Author(s):  
Xiaowei Wang ◽  
Chuanqi Wang ◽  
Tao Gao ◽  
Tengteng Li ◽  
Hailiang Lao

This paper studied the engine test cycles including world harmonized steady cycle (WHSC), world harmonized transient cycle (WHTC) , china heavy-duty steady cycle (CHSC) and china heavy-duty transient cycle (CHTC) based on a diesel engine which meet the China VI heavy duty vehicle emission standard. The results show that regression analysis of speed, torque and power all meet the requirements of the China VI heavy duty vehicle standard. For this engine, NOx, PM and THC pollutants under CHSC are 134.5%, 29.6% and 94.4% higher than those under WHSC, respectively. PN emissions of CHSC is 65.6% lower than that of WHSC. NOx, PM and PN pollutants under CHTC are 62.9%, 96.4% and 64.3% higher than those under WHTC, respectively. The exhaust temperature of the first 350 seconds at CHTC is lower, which poses a greater challenge to the conversion efficiency of the after-treatment system at low speed and low load.


Empirica ◽  
2012 ◽  
Vol 39 (2) ◽  
pp. 261-278 ◽  
Author(s):  
Karl W. Steininger ◽  
Christoph Schmid ◽  
Alexandra Tobin

2021 ◽  
Vol 9 (2) ◽  
pp. 123
Author(s):  
Sergejus Lebedevas ◽  
Lukas Norkevičius ◽  
Peilin Zhou

Decarbonization of ship power plants and reduction of harmful emissions has become a priority in the technological development of maritime transport, including ships operating in seaports. Engines fueled by diesel without using secondary emission reduction technologies cannot meet MARPOL 73/78 Tier III regulations. The MEPC.203 (62) EEDI directive of the IMO also stipulates a standard for CO2 emissions. This study presents the results of research on ecological parameters when a CAT 3516C diesel engine is replaced by a dual-fuel (diesel-liquefied natural gas) powered Wartsila 9L20DF engine on an existing seaport tugboat. CO2, SO2 and NOx emission reductions were estimated using data from the actual engine load cycle, the fuel consumption of the KLASCO-3 tugboat, and engine-prototype experimental data. Emission analysis was performed to verify the efficiency of the dual-fuel engine in reducing CO2, SO2 and NOx emissions of seaport tugboats. The study found that replacing a diesel engine with a dual-fuel-powered engine led to a reduction in annual emissions of 10% for CO2, 91% for SO2, and 65% for NOx. Based on today’s fuel price market data an economic impact assessment was conducted based on the estimated annual fuel consumption of the existing KLASCO-3 seaport tugboat when a diesel-powered engine is replaced by a dual-fuel (diesel-natural gas)-powered engine. The study showed that a 33% fuel costs savings can be achieved each year. Based on the approved methodology, an ecological impact assessment was conducted for the entire fleet of tugboats operating in the Baltic Sea ports if the fuel type was changed from diesel to natural gas. The results of the assessment showed that replacing diesel fuel with natural gas achieved 78% environmental impact in terms of NOx emissions according to MARPOL 73/78 Tier III regulations. The research concludes that new-generation engines on the market powered by environmentally friendly fuels such as LNG can modernise a large number of existing seaport tugboats, significantly reducing their emissions in ECA regions such as the Baltic Sea.


2021 ◽  
Vol 156 ◽  
pp. 105781
Author(s):  
Louise Gren ◽  
Vilhelm B. Malmborg ◽  
John Falk ◽  
Lassi Markula ◽  
Maja Novakovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document