scholarly journals Eddy current loss evaluation of magnetic powder core based on electric and magnetic networks

AIP Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 056678 ◽  
Author(s):  
Shigeru Konda ◽  
Yukihiro Yoshida ◽  
Osamu Ichinokura
Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6721
Author(s):  
Mitsuhide Sato ◽  
Keigo Takazawa ◽  
Manabu Horiuchi ◽  
Ryoken Masuda ◽  
Ryo Yoshida ◽  
...  

The demand for high-speed servomotors is increasing, and minimal losses in both high-speed and high-torque regions are required. Copper loss reduction in permanent magnet motors can be achieved by configuring concentrated winding, but there are more spatial harmonics compared with distributed winding. At high-speed rotation, the eddy current loss of the rotor increases, and efficiency tends to decrease. Therefore, we propose a motor in which a composite ring made from resin material mixed with magnetic powder is mounted on the stator to suppress spatial harmonics. This paper describes three characteristic motor types, namely, open-slot motors, composite-ring motors, and closed-slot motors. Spatial harmonics are reduced significantly in composite-ring motors, and rotor eddy current loss is reduced by more than 50% compared with open-slot motors. Thermal analysis suggests that the saturation temperature rise value is reduced by more than 30 K. The use of a composite ring is effective in reducing magnet eddy current loss during high-speed rotation. Conversely, the torque characteristics in the closed-slot motor are greatly reduced as well as the efficiency. Magnetic circuits and simulations show that on electrical steel sheets with high relative permeability, the ring significantly reduces the torque flux passing through the stator, thus reducing the torque constant. To achieve reduced eddy current loss during high-speed rotation while ensuring torque characteristics with the composite ring, it is necessary to set the relative permeability and thickness of the composite ring according to motor specifications.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


2009 ◽  
Vol 129 (11) ◽  
pp. 1022-1029 ◽  
Author(s):  
Katsumi Yamazaki ◽  
Yuji Kanou ◽  
Yu Fukushima ◽  
Shunji Ohki ◽  
Akira Nezu ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 78
Author(s):  
Tomislav Strinić ◽  
Bianca Wex ◽  
Gerald Jungmayr ◽  
Thomas Stallinger ◽  
Jörg Frevert ◽  
...  

A sealless pump, also known as a wet rotor pump or a canned pump, requires a stationary sleeve in the air gap to protect the stator from a medium that flows around the rotor and the pump impeller. Since the sleeve is typically made from a non-magnetic electrically conductive material, the time-varying magnetic flux density in the air gap creates an eddy current loss in the sleeve. Precise assessment of this loss is crucial for the design of the pump. This paper presents a method for calculating the eddy current loss in such sleeves by using only a two-dimensional (2D) finite element method (FEM) solver. The basic idea is to use the similar structure of Ampère’s circuital law and Faraday’s law of induction to solve eddy current problems with a magnetostatic solver. The theoretical background behind the proposed method is explained and applied to the sleeve of a sealless pump. Finally, the results obtained by a 2D FEM approach are verified by three-dimensional FEM transient simulations.


2000 ◽  
Vol 36 (4) ◽  
pp. 1132-1137 ◽  
Author(s):  
J.R. Brauer ◽  
Z.J. Cendes ◽  
B.C. Beihoff ◽  
K.P. Phillips

2009 ◽  
Vol 19 (3) ◽  
pp. 2851-2854 ◽  
Author(s):  
M. Staines ◽  
K.P. Thakur ◽  
L.S. Lakshmi ◽  
S. Rupp

Sign in / Sign up

Export Citation Format

Share Document