Vortex pairing and reverse cascade in a simulated two-dimensional rocket motor-like flow field

2017 ◽  
Vol 29 (7) ◽  
pp. 075104 ◽  
Author(s):  
Kalyana Chakravarthy ◽  
Debasis Chakraborty
Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
J. Barry Greenberg ◽  
David Katoshevski

A theoretical investigation of the influence of a standing wave flow-field on the dynamics of a laminar two-dimensional spray diffusion flame is presented for the first time. The mathematical analysis permits mild slip between the droplets and their host surroundings. For the liquid phase, the use of a small Stokes number as the perturbation parameater enables a solution of the governing equations to be developed. Influence of the standing wave flow-field on droplet grouping is described by a specially constructed modification of the vaporization Damkohler number. Instantaneous flame front shapes are found via a solution for the usual Schwab–Zeldovitch parameter. Numerical results obtained from the analytical solution uncover the strong bearing that droplet grouping, induced by the standing wave flow-field, can have on flame height, shape, and type (over- or under-ventilated) and on the existence of multiple flame fronts.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


1973 ◽  
Vol 187 (1) ◽  
pp. 733-743
Author(s):  
R. S. Benson ◽  
V. A. Eustace

The performance and flow field characteristics for two-dimensional ejector systems are determined theoretically for the condition when operation is independent of ambient pressure. The method considers the detailed inviscid interaction between the primary and secondary streams within the mixing tube and an estimate is made of the secondary flow entrained by the two-stream viscous mixing region. The validity of the theory is tested by comparing the performance characteristics of an experimental ejector facility with theoretical predictions and by comparing the theoretical flow field, in terms of constant density contours, with infinite fringe interferograms.


Author(s):  
Morteza Rahmanpour ◽  
Reza Ebrahimi ◽  
Mehrzad Shams

A numerical method for calculation of strong radiation for two-dimensional reactive air flow field is developed. The governing equations are taken to be two dimensional, compressible Reynolds-average Navier-Stokes and species transport equations. Also, radiation heat flux in energy equation is evaluated using a model of discrete ordinate method. The model used S4 approximation to reduce the governing system of integro-differential equations to coupled set of partial differential equations. A multiband model is used to construct absorption coefficients. Tangent slab approximation is assumed to determine the characteristic parameters needed in the Discrete Ordinates Method. The turbulent diffusion and heat fluxes are modeled by Baldwin and Lomax method. The flow solution is obtained with a fully implicit time marching method. A thermochemical nonequilibrium formulation appropriate to hypersonic transitional flow of air is presented. The method is compared with existing experimental results and good agreement is observed.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Fabio Nardecchia ◽  
Annalisa Di Bernardino ◽  
Francesca Pagliaro ◽  
Paolo Monti ◽  
Giovanni Leuzzi ◽  
...  

Computational fluid dynamics (CFD) is currently used in the environmental field to simulate flow and dispersion of pollutants around buildings. However, the closure assumptions of the turbulence usually employed in CFD codes are not always physically based and adequate for all the flow regimes relating to practical applications. The starting point of this work is the performance assessment of the V2F (i.e., v2¯ − f) model implemented in Ansys Fluent for simulating the flow field in an idealized array of two-dimensional canyons. The V2F model has been used in the past to predict low-speed and wall-bounded flows, but it has never been used to simulate airflows in urban street canyons. The numerical results are validated against experimental data collected in the water channel and compared with other turbulence models incorporated in Ansys Fluent (i.e., variations of both k-ε and k-ω models and the Reynolds stress model). The results show that the V2F model provides the best prediction of the flow field for two flow regimes commonly found in urban canopies. The V2F model is also employed to quantify the air-exchange rate (ACH) for a series of two-dimensional building arrangements, such as step-up and step-down configurations, having different aspect ratios and relative heights of the buildings. The results show a clear dependence of the ACH on the latter two parameters and highlight the role played by the turbulence in the exchange of air mass, particularly important for the step-down configurations, when the ventilation associated with the mean flow is generally poor.


Sign in / Sign up

Export Citation Format

Share Document