The effect of welding thermal cycles on the microstructure development of energy components

2017 ◽  
Author(s):  
Zdravko Praunseis
Author(s):  
E. L. Buhle ◽  
U. Aebi

CTEM brightfield images are formed by a combination of relatively high resolution elastically scattered electrons and unscattered and inelastically scattered electrons. In the case of electron spectroscopic images (ESI), the inelastically scattered electrons cause a loss of both contrast and spatial resolution in the image. In the case of ESI imaging on the Zeiss EM902, the transmited electrons are dispersed into their various energy components by passing them through a magnetic prism spectrometer; a slit is then placed in the image plane of the prism to select the electrons of a given energy loss for image formation. The purpose of this study was to compare CTEM with ESI images recorded on a Zeiss EM902 of ordered protein arrays. Digital image processing was employed to analyze the average unit cell morphologies of the two types of images.


Author(s):  
Johnny Borghetto ◽  
Alfredo Contin ◽  
Andrea Morotti ◽  
Andrea Pegoiani ◽  
Giovanni Pirovano ◽  
...  

2005 ◽  
Vol 96 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Sung-Min Lee ◽  
Suk-Joong L. Kang

2019 ◽  
Author(s):  
Taeseon Lee ◽  
Ali Nassiri ◽  
Taylor Dittrich ◽  
Anupam Vivek ◽  
Glenn Daehn

1995 ◽  
Vol 403 ◽  
Author(s):  
T. S. Hayes ◽  
F. T. Ray ◽  
K. P. Trumble ◽  
E. P. Kvam

AbstractA refined thernodynamic analysis of the reaction between molen Al and SiC is presented. The calculations indicate much higher Si concentrations for saturation with respect to AkC 3 formation than previously reported. Preliminary microstructural studies confirm the formation of interfacial A14C3 for pure Al thin films on SiC reacted at 9000C. The implications of the calculations and experimental observations for the production of ohmic contacts to p-type SiC are discussed.


Author(s):  
F. Pixner ◽  
R. Buzolin ◽  
S. Schönfelder ◽  
D. Theuermann ◽  
F. Warchomicka ◽  
...  

AbstractThe complex thermal cycles and temperature distributions observed in additive manufacturing (AM) are of particular interest as these define the microstructure and the associated properties of the part being built. Due to the intrinsic, layer-by-layer material stacking performed, contact methods to measure temperature are not suitable, and contactless methods need to be considered. Contactless infrared irradiation techniques were applied by carrying out thermal imaging and point measurement methods using pyrometers to determine the spatial and temporal temperature distribution in wire-based electron beam AM. Due to the vacuum, additional challenges such as element evaporation must be overcome and additional shielding measures were taken to avoid interference with the contactless techniques. The emissivities were calibrated by thermocouple readings and geometric boundary conditions. Thermal cycles and temperature profiles were recorded during deposition; the temperature gradients are described and the associated temperature transients are derived. In the temperature range of the α+β field, the cooling rates fall within the range of 180 to 350 °C/s, and the microstructural characterisation indicates an associated expected transformation of β→α'+α with corresponding cooling rates. Fine acicular α and α’ formed and local misorientation was observed within α as a result of the temperature gradient and the formation of the α’.


Sign in / Sign up

Export Citation Format

Share Document