scholarly journals Contactless temperature measurement in wire-based electron beam additive manufacturing Ti-6Al-4V

Author(s):  
F. Pixner ◽  
R. Buzolin ◽  
S. Schönfelder ◽  
D. Theuermann ◽  
F. Warchomicka ◽  
...  

AbstractThe complex thermal cycles and temperature distributions observed in additive manufacturing (AM) are of particular interest as these define the microstructure and the associated properties of the part being built. Due to the intrinsic, layer-by-layer material stacking performed, contact methods to measure temperature are not suitable, and contactless methods need to be considered. Contactless infrared irradiation techniques were applied by carrying out thermal imaging and point measurement methods using pyrometers to determine the spatial and temporal temperature distribution in wire-based electron beam AM. Due to the vacuum, additional challenges such as element evaporation must be overcome and additional shielding measures were taken to avoid interference with the contactless techniques. The emissivities were calibrated by thermocouple readings and geometric boundary conditions. Thermal cycles and temperature profiles were recorded during deposition; the temperature gradients are described and the associated temperature transients are derived. In the temperature range of the α+β field, the cooling rates fall within the range of 180 to 350 °C/s, and the microstructural characterisation indicates an associated expected transformation of β→α'+α with corresponding cooling rates. Fine acicular α and α’ formed and local misorientation was observed within α as a result of the temperature gradient and the formation of the α’.

2021 ◽  
Author(s):  
Mevlüt Yunus Kayacan ◽  
Nihat Yılmaz

Abstract Among additive manufacturing technologies, Laser Powder Bed Fusion (L-PBF) is considered the most widespread layer-by-layer process. Although the L-PBF, which is also called as SLM method, has many advantages, several challenging problems must be overcome, including part positioning issues. In this study, the effect of part positioning on the microstructure of the part in the L-PBF method was investigated. Five Ti6Al4V samples were printed in different positions on the building platform and investigated with the aid of temperature, porosity, microstructure and hardness evaluations. In this study, martensitic needles were detected within the microstructure of Ti6Al4V samples. Furthermore, some twins were noticed on primary martensitic lines and the agglomeration of β precipitates was observed in vanadium rich areas. The positioning conditions of samples were revealed to have a strong effect on temperature gradients and on the average size of martensitic lines. Besides, different hardness values were attained depending on sample positioning conditions. As a major result, cooling rates were found related to positions of samples and the location of point on the samples. Higher cooling rates and repetitive cooling cycles resulted in microstructures becoming finer and harder.


Author(s):  
M Shafiqur Rahman ◽  
Paul J. Schilling ◽  
Paul D. Herrington ◽  
Uttam K. Chakravarty

Electron beam additive manufacturing (EBAM) is a powder-bed fusion additive manufacturing (AM) technology that can make full density metallic components using a layer-by-layer fabrication method. To build each layer, the EBAM process includes powder spreading, preheating, melting, and solidification. The quality of the build part, process reliability, and energy efficiency depends typically on the thermal behavior, material properties, and heat source parameters involved in the EBAM process. Therefore, characterizing those properties and understanding the correlations among the process parameters are essential to evaluate the performance of the EBAM process. In this study, a three-dimensional computational fluid dynamics (CFD) model with Ti-6Al-4V powder was developed incorporating the temperature-dependent thermal properties and a moving conical volumetric heat source with Gaussian distribution to conduct the simulations of the EBAM process. The melt pool dynamics and its thermal behavior were investigated numerically, and results for temperature profile, melt pool geometry, cooling rate and variation in density, thermal conductivity, specific heat capacity, and enthalpy were obtained for several sets of electron beam specifications. Validation of the model was performed by comparing the simulation results with the experimental results for the size of the melt pool.


Author(s):  
M. Shafiqur Rahman ◽  
Paul J. Schilling ◽  
Paul D. Herrington ◽  
Uttam K. Chakravarty

Electron Beam Additive Manufacturing (EBAM) is one of the emerging additive manufacturing (AM) technologies that is uniquely capable of making full density metallic components using layer-by-layer fabrication method. To build each layer, the process includes powder spreading, pre-heating, melting, and solidification. The thermal and material properties involved in the EBAM process play a vital role to determine the part quality, reliability, and energy efficiency. Therefore, characterizing the properties and understanding the correlations among the process parameters are incumbent to evaluate the performance of the EBAM process. In this study, a three dimensional computational fluid dynamics (CFD) model with Ti-6Al-4V powder has been developed incorporating the temperature-dependent thermal properties and a moving conical volumetric heat source with Gaussian distribution to conduct the simulations of the EBAM process. The melt-pool dynamics and its thermal behavior have been investigated numerically using a CFD solver and results for temperature profile, cooling rate, variation in density, thermal conductivity, specific heat capacity, and enthalpy have been obtained for a particular set of electron beam specifications.


2019 ◽  
Vol 26 (3) ◽  
pp. 485-498 ◽  
Author(s):  
Seema Negi ◽  
Athul Arun Nambolan ◽  
Sajan Kapil ◽  
Prathamesh Shreekant Joshi ◽  
Manivannan R. ◽  
...  

Purpose Electron beam-based additive manufacturing (EBAM) is an emerging technology to produce metal parts layer-by-layer. The purpose of this paper is to systematically address the research and development carried out for this technology, up till now. Design/methodology/approach This paper identifies several aspects of research and development in EBAM. Findings Electron beam has several unique advantages such as high scanning speed, energy efficiency, versatility for several materials and better part integrity because of a vacuum working environment. Originality/value This paper provides information on different aspects of EBAM with the current status and future scope.


Author(s):  
A. Förner ◽  
J. Vollhüter ◽  
D. Hausmann ◽  
C. Arnold ◽  
P. Felfer ◽  
...  

AbstractMaterials processed by additive manufacturing often exhibit a very fine-scaled microstructures due to high cooling rates in the process. In this study, single-layer surface electron beam melting is used to create very high cooling rates similar to additive manufacturing processes to investigate the resulting microstructure. In the case of Nb-Si-Cr in-situ composites, a nano-scaled eutectic microstructure is beneficial for improving the mechanical and oxidational properties. Fast solidification results in the formation of supersaturated phases of Nbss and Cr2Nb with phase diameters down to 10 nm as well as in the stabilization of the metastable Nb9(Cr,Si)5 phase at room temperature. After processing with different solidification rates, the decomposition of the Nb9(Cr,Si)5 phase has been studied in detail with atom probe microscopy. The stabilization of mixed silicide phases by electron beam melting shows a new pathway for improving hardness and enhancing oxidation resistance of nanostructured eutectic in-situ composites, by which the inherent weaknesses of Nb-Si-Cr can be overcome without further alloying elements. Graphical Abstract


2013 ◽  
Author(s):  
Joseph N. Zalameda ◽  
Eric R. Burke ◽  
Robert A. Hafley ◽  
Karen M. Taminger ◽  
Christopher S. Domack ◽  
...  

Author(s):  
Moritz Kahlert ◽  
Florian Brenne ◽  
Malte Vollmer ◽  
Thomas Niendorf

AbstractElectron beam powder bed fusion (E-PBF) is a well-known additive manufacturing process. Components are realized based on layer-by-layer melting of metal powder. Due to the high degree of design freedom, additive manufacturing came into focus of tooling industry, especially for tools with sophisticated internal cooling channels. The present work focuses on the relationships between processing, microstructure evolution, chemical composition and mechanical properties of a high alloyed tool steel AISI H13 (1.2344, X40CrMoV5-1) processed by E-PBF. The specimens are free of cracks, however, lack of fusion defects are found upon use of non-optimized parameters finally affecting the mechanical properties detrimentally. Specimens built based on suitable parameters show a relatively fine grained bainitic/martensitic microstructure, finally resulting in a high ultimate strength and an even slightly higher failure strain compared to conventionally processed and heat treated AISI H13.


Vestnik MEI ◽  
2017 ◽  
pp. 8-14 ◽  
Author(s):  
Aleksandr V. Gudenko ◽  
◽  
Viktor К. Dragunov ◽  
Andrey Р. Sliva ◽  
◽  
...  

Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Sign in / Sign up

Export Citation Format

Share Document