Modeling statics and kinetics of 137Cs sorption by modified aluminosilicates from aqueous solutions of various chemical composition

Author(s):  
P. A. Orlov ◽  
A. V. Voronina ◽  
M. O. Blinova ◽  
G. A. Yakovlev ◽  
V. S. Semenishchev
1981 ◽  
Vol 46 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Milan Strašák ◽  
Jaroslav Majer

The kinetics of oxidation of alkenes by thallic sulphate in aqueous solutions, involving the two reaction steps-the hydroxythallation and the dethallation - was studied, and the effect of salts on the kinetics was examined; this made it possible to specify more precisely the reaction mechanism and to suggest a qualitative model of the reaction coordinate. It was found that in homogeneous as well as in heterogeneous reaction conditions, the reaction can be accelerated appreciably by adding tetraalkylammonium salts. These salts not only operate as catalysts of the phase transfer, but also exert a significant kinetic effect, which can be explained with a simplification in terms of a stabilization of the transition state of the reaction.


1995 ◽  
Vol 60 (4) ◽  
pp. 568-575
Author(s):  
Karel Sporka ◽  
Jiří Hanika ◽  
Vladimír Jůn

Preparation of skeletal Co-Mo catalysts by controlled impregnation of aluminosilicate skeletons containing deposited gamma-alumina with aqueous solutions of active component precursors has been investigated. The activity of the laboratory catalysts in gas oil hydrodesulfurization has been determined. Kinetics of impregnation of skeletal supports, the effect of their type, and the dependence of catalyst activity on the content of cobalt and molybdenum sulfides are reported. HDS skeletal catalysts prepared were compared with the extruded types. It was found that skeletal HDS catalysts show the higher activity (related to the content of alumina and Co-Mo sulfides) than the extruded ones due to the less significant effect of internal diffusion. However, if the activity is related to the same volume of catalyst bed, the activity of skeletal catalysts is only one fourth of that of the extruded types.


1990 ◽  
Vol 55 (2) ◽  
pp. 345-353 ◽  
Author(s):  
Ivan Halaša ◽  
Milica Miadoková

The authors investigated periodic potential changes measured on oriented sections of Al single crystals during spontaneous dissolution in dilute aqueous solutions of KOH, with the aim to find optimum conditions for the formation of potential oscillations. It was found that this phenomenon is related with the kinetics of the reaction investigated, whose rate also changed periodically. The mechanism of the oscillations is discussed in view of the experimental findings.


2017 ◽  
Vol 228 ◽  
pp. 98-107 ◽  
Author(s):  
Adriana Campos-Ramírez ◽  
Maripaz Márquez ◽  
Liliana Quintanar ◽  
Luis F. Rojas-Ochoa

2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


1995 ◽  
Vol 185-188 ◽  
pp. 655-666
Author(s):  
T. Agladze ◽  
G. Tsurtsumia ◽  
I. Khorbaladze ◽  
T. Ekhvaia

1969 ◽  
Vol 113 (4) ◽  
pp. 611-615 ◽  
Author(s):  
J. Leichter ◽  
M. A. Joslyn

Results are presented on the rate of thiamin cleavage by sulphite in aqueous solutions as affected by temperature (20–70°), pH(2·5–7·0), and variation of the concentration of either thiamin (1–20μm) or sulphite (10–5000μm as sulphur dioxide). Plots of the logarithm of percentage of residual thiamin against time were found to be linear and cleavage thus was first-order with respect to thiamin. At pH5 the rate was also found to be proportional to the sulphite concentration. In the pH region 2·5–7·0 at 25° the rate constant was 50m−1hr.−1 at pH5·5–6·0, and decreased at higher or lower pH values. The rate of reaction increased between 20° and 70°, indicating a heat of activation of 13·6kcal./mole.


Sign in / Sign up

Export Citation Format

Share Document