Non-destructive spatial characterization of buried interfaces in multilayer stacks via two color picosecond acoustics

2017 ◽  
Vol 111 (24) ◽  
pp. 243105 ◽  
Author(s):  
Jorge C. D. Faria ◽  
Philippe Garnier ◽  
Arnaud Devos
2020 ◽  
Vol 236 ◽  
pp. 04002 ◽  
Author(s):  
Yuri Gerelli

Over the last 10 years, neutron reflectometry (NR) has emerged as a powerful technique for the investigation of biologically relevant thin films. The great advantage of NR with respect to many other surface-sensitive techniques is its sub-nanometer resolution that enables structural characterizations at the molecular level. In the case of bio-relevant samples, NR is non-destructive and can be used to probe thin films at buried interfaces or enclosed in bulky sample environment equipment. Moreover, recent advances in biomolecular deutera-tion enabled new labeling strategies to highlight certain structural features and to resolve with better accuracy the location of chemically similar molecules within a thin film. In this chapter I will describe some applications of NR to bio-relevant samples and discuss some of the data analysis approaches available for biological thin films. In particular, examples on the structural characterization of biomembranes, protein films and protein-lipid interactions will be described.


The Analyst ◽  
2019 ◽  
Vol 144 (3) ◽  
pp. 753-765 ◽  
Author(s):  
Anushka Gupta ◽  
Gabriel F. Dorlhiac ◽  
Aaron M. Streets

Non-destructive spatial characterization of lipid droplets using coherent Raman scattering microscopy and computational image analysis algorithms at the single-cell level.


2001 ◽  
Vol 54 (8) ◽  
pp. 487 ◽  
Author(s):  
Michael James

Neutron reflectometry has become an increasingly important technique in the characterization of thin-film surfaces and interfaces. Recent advances in instrumentation, experimental design, sample environments and methods of data analysis now make it possible to obtain an angstrom-precision depth profile of the film composition. Neutrons are non-destructive and highly penetrating which makes them ideal probes for the study of buried interfaces as well as surfaces under a wide range of extreme environments. Isotopic H/D substitution (particularly in colloidal, polymeric or biological systems) provides a unique tool for selectively labelling different components of complex planar architectures. The fundamental aspects of neutron reflectometry are discussed, and the utility of this technique is illustrated by a review of several recent studies.


2005 ◽  
Vol 82 (1) ◽  
pp. 84-91
Author(s):  
Shriram Ramanathan ◽  
Chuan Hu ◽  
Evan Pickett ◽  
Patrick Morrow ◽  
Yongmei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document