Non-destructive high-resolution characterization of buried interfaces for advanced interconnect and packaging architectures: Experiments and modeling

2005 ◽  
Vol 82 (1) ◽  
pp. 84-91
Author(s):  
Shriram Ramanathan ◽  
Chuan Hu ◽  
Evan Pickett ◽  
Patrick Morrow ◽  
Yongmei Liu ◽  
...  
2020 ◽  
Vol 236 ◽  
pp. 04002 ◽  
Author(s):  
Yuri Gerelli

Over the last 10 years, neutron reflectometry (NR) has emerged as a powerful technique for the investigation of biologically relevant thin films. The great advantage of NR with respect to many other surface-sensitive techniques is its sub-nanometer resolution that enables structural characterizations at the molecular level. In the case of bio-relevant samples, NR is non-destructive and can be used to probe thin films at buried interfaces or enclosed in bulky sample environment equipment. Moreover, recent advances in biomolecular deutera-tion enabled new labeling strategies to highlight certain structural features and to resolve with better accuracy the location of chemically similar molecules within a thin film. In this chapter I will describe some applications of NR to bio-relevant samples and discuss some of the data analysis approaches available for biological thin films. In particular, examples on the structural characterization of biomembranes, protein films and protein-lipid interactions will be described.


1991 ◽  
Vol 35 (A) ◽  
pp. 137-142 ◽  
Author(s):  
T. C. Huang ◽  
W. Parrish

AbstractPrecision X-ray reflectivity data were obtained with a high-resolution reflectometer equipped with a rotating anode X-ray source and Ge 220 channel monochromators (one placed before and the other after the specimen). The surfaces and buried interfaces of thin films were characterized by ieast-squares refinement of experimental data. Values of thickness, density, and/or roughness of Pt “single-layer” and Pt/Co based multiple-layer films were determined.


2001 ◽  
Vol 54 (8) ◽  
pp. 487 ◽  
Author(s):  
Michael James

Neutron reflectometry has become an increasingly important technique in the characterization of thin-film surfaces and interfaces. Recent advances in instrumentation, experimental design, sample environments and methods of data analysis now make it possible to obtain an angstrom-precision depth profile of the film composition. Neutrons are non-destructive and highly penetrating which makes them ideal probes for the study of buried interfaces as well as surfaces under a wide range of extreme environments. Isotopic H/D substitution (particularly in colloidal, polymeric or biological systems) provides a unique tool for selectively labelling different components of complex planar architectures. The fundamental aspects of neutron reflectometry are discussed, and the utility of this technique is illustrated by a review of several recent studies.


2018 ◽  
Vol 25 (1) ◽  
pp. 16-19 ◽  
Author(s):  
Jens Rehanek ◽  
Christopher J. Milne ◽  
Jakub Szlachetko ◽  
Joanna Czapla-Masztafiak ◽  
Jörg Schneider ◽  
...  

One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10−4, within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.


2002 ◽  
Vol 717 ◽  
Author(s):  
G. M. Cohen ◽  
P.M. Mooney ◽  
H. Park ◽  
C. Cabral ◽  
E.C. Jones

AbstractHigh-resolution x-ray diffraction (HRXRD) was used to monitor silicon-on-insulator (SOI) processing steps. The use of HRXRD is attractive since it is non-destructive and can be applied directly to product wafers. We show the usefulness of this technique for the characterization of amorphizing implants for shallow junctions, solid phase re-crystallization of implanted junctions, cobalt-silicide formation, and oxidation; all are critical processes for CMOS fabrication on SOI.


Sign in / Sign up

Export Citation Format

Share Document