scholarly journals Quantitative imaging of lipid droplets in single cells

The Analyst ◽  
2019 ◽  
Vol 144 (3) ◽  
pp. 753-765 ◽  
Author(s):  
Anushka Gupta ◽  
Gabriel F. Dorlhiac ◽  
Aaron M. Streets

Non-destructive spatial characterization of lipid droplets using coherent Raman scattering microscopy and computational image analysis algorithms at the single-cell level.

2021 ◽  
Vol 135 (5) ◽  
Author(s):  
Tao Chen ◽  
Ahmet Yavuz ◽  
Meng C. Wang

ABSTRACT Lipid droplets (LDs) are lipid-rich organelles universally found in most cells. They serve as a key energy reservoir, actively participate in signal transduction and dynamically communicate with other organelles. LD dysfunction has been associated with a variety of diseases. The content level, composition and mobility of LDs are crucial for their physiological and pathological functions, and these different parameters of LDs are subject to regulation by genetic factors and environmental inputs. Coherent Raman scattering (CRS) microscopy utilizes optical nonlinear processes to probe the intrinsic chemical bond vibration, offering label-free, quantitative imaging of lipids in vivo with high chemical specificity and spatiotemporal resolution. In this Review, we provide an overview over the principle of CRS microscopy and its application in tracking different parameters of LDs in live cells and organisms. We also discuss the use of CRS microscopy in genetic screens to discover lipid regulatory mechanisms and in understanding disease-related lipid pathology.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aneta Blat ◽  
Jakub Dybas ◽  
Karolina Chrabaszcz ◽  
Katarzyna Bulat ◽  
Agnieszka Jasztal ◽  
...  

Abstract The significance and utility of innovative imaging techniques in arterial clot analysis, which enable far more detailed and automated analysis compared to standard methods, are presented. The examination of two types of human thrombi is shown, representing the main ischemic stroke etiologies: fibrin–predominant clot of large vessel origin and red blood cells–rich clot of cardioembolic origin. The synergy effect of Fourier–transform infrared spectroscopy (FTIR), Raman spectroscopy (RS) and atomic force microscopy (AFM) techniques supported by chemometrics in comparison with reference histological staining was presented. The main advantage of such approach refers to free–label and non–destructive quantitative imaging of clinically valid, biochemical parameters in whole sample (FTIR–low resolution) and selected regions (RS–ultra–high resolution). We may include here analysis of lipid content, its distribution and total degree of unsaturation as well as analysis of protein content (mainly fibrin and hemoproteins). The AFM studies enhanced the vibrational data, showed clearly shape and thickness of clot features as well as visualized the fibrin framework. The extraordinary sensitivity of FTIR and RS imaging toward detection and discrimination of clinically valid parameters in clot confirms its applicability in assessment of thrombi origin.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Daniel Jaeger ◽  
Christian Pilger ◽  
Henning Hachmeister ◽  
Elina Oberländer ◽  
Robin Wördenweber ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hideo Imamura ◽  
Pieter Monsieurs ◽  
Marlene Jara ◽  
Mandy Sanders ◽  
Ilse Maes ◽  
...  

Abstract Here, we report a pilot study paving the way for further single cell genomics studies in Leishmania. First, the performances of two commercially available kits for Whole Genome Amplification (WGA), PicoPLEX and RepliG were compared on small amounts of Leishmania donovani DNA, testing their ability to preserve specific genetic variations, including aneuploidy levels and SNPs. We show here that the choice of WGA method should be determined by the planned downstream genetic analysis, PicoPLEX and RepliG performing better for aneuploidy and SNP calling, respectively. This comparison allowed us to evaluate and optimize corresponding bio-informatic methods. As PicoPLEX was shown to be the preferred method for studying single cell aneuploidy, this method was applied in a second step, on single cells of L. braziliensis, which were sorted by fluorescence activated cell sorting (FACS). Even sequencing depth was achieved in 28 single cells, allowing accurate somy estimation. A dominant karyotype with three aneuploid chromosomes was observed in 25 cells, while two different minor karyotypes were observed in the other cells. Our method thus allowed the detection of aneuploidy mosaicism, and provides a solid basis which can be further refined to concur with higher-throughput single cell genomic methods.


Author(s):  
Hideo Imamura ◽  
Marlene Jara ◽  
Pieter Monsieurs ◽  
Mandy Sanders ◽  
Ilse Maes ◽  
...  

AbstractHere, we report a pilot study paving the way for further single cell genomics studies in Leishmania. First, the performances of two commercially available kits for Whole Genome Amplification (WGA), PicoPlex and RepliG was compared on small amounts of Leishmania donovani DNA, testing their ability to preserve specific genetic variations, including aneuploidy levels and SNPs. We show here that the choice of WGA method should be determined by the planned downstream genetic analysis, Picoplex and RepliG performing better for aneuploidy and SNP calling, respectively. This comparison allowed us to evaluate and optimize corresponding bio-informatic methods. As PicoPlex was shown to be the preferred method for studying single cell aneuploidy, this method was applied in a second step, on single cells of L. braziliensis, which were sorted by fluorescence activated cell sorting (FACS). Even sequencing depth was achieved in 28 single cells, allowing accurate somy estimation. A dominant karyotype with three aneuploid chromosomes was observed in 25 cells, while two different minor karyotypes were observed in the other cells. Our method thus allowed the detection of aneuploidy mosaicism, and provides a solid basis which can be further refined to concur with higher-throughput single cell genomic methods.


Author(s):  
Leslie M. Loew

A major application of potentiometric dyes has been the multisite optical recording of electrical activity in excitable systems. After being championed by L.B. Cohen and his colleagues for the past 20 years, the impact of this technology is rapidly being felt and is spreading to an increasing number of neuroscience laboratories. A second class of experiments involves using dyes to image membrane potential distributions in single cells by digital imaging microscopy - a major focus of this lab. These studies usually do not require the temporal resolution of multisite optical recording, being primarily focussed on slow cell biological processes, and therefore can achieve much higher spatial resolution. We have developed 2 methods for quantitative imaging of membrane potential. One method uses dual wavelength imaging of membrane-staining dyes and the other uses quantitative 3D imaging of a fluorescent lipophilic cation; the dyes used in each case were synthesized for this purpose in this laboratory.


2003 ◽  
Vol 773 ◽  
Author(s):  
Xiaohu Gao ◽  
Shuming Nie ◽  
Wallace H. Coulter

AbstractLuminescent quantum dots (QDs) are emerging as a new class of biological labels with unique properties and applications that are not available from traditional organic dyes and fluorescent proteins. Here we report new developments in using semiconductor quantum dots for quantitative imaging and spectroscopy of single cancer cells. We show that both live and fixed cells can be labeled with multicolor QDs, and that single cells can be analyzed by fluorescence imaging and wavelength-resolved spectroscopy. These results raise new possibilities in cancer imaging, molecular profiling, and disease staging.


Sign in / Sign up

Export Citation Format

Share Document