scholarly journals Kinematics of a vertical axis wind turbine with a variable pitch angle

2018 ◽  
Author(s):  
Mateusz Jakubowski ◽  
Roman Starosta ◽  
Pawel Fritzkowski
2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Amin A. Mohammed ◽  
Ahmet Z. Sahin ◽  
Hassen M. Ouakad

Abstract A double multiple streamtube model coupled with variable pitch methodology is used to analyze the performance characteristics of a small-scale straight-bladed Darrieus type vertical axis wind turbine (SB-VAWT). The numerical study revealed that a fixed pitch of −2.5 deg could greatly enhance the performance of the wind turbine. However, no improvement is observed in the starting torque capacity. Furthermore, the performance of upwind and downwind zones has been investigated, and it is found that the VAWT starting capacity is improved by increasing/decreasing the pitch angle upwind/downwind of the turbine. To optimize the performance, four cases of variable pitch angle schemes of sinusoidal nature were examined. The parameters of the sinusoidal functions were optimized using differential evolution (DE) algorithm with different cost functions. The results showed improvement in the power coefficient, yet with low starting capacity enhancement. Among the objective functions used in DE algorithm, the negative of the average power coefficient is found to lead to the best starting capacity with moderate peak power coefficient.


2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


2020 ◽  
pp. 0309524X2093513
Author(s):  
Simon A Prince ◽  
Carmine Badalamenti ◽  
Dimitar Georgiev

An experimental study is presented on the performance of a vertical axis wind turbine with variable blade geometry of the design developed by Austin Farrah. This is experimentally compared with the performance of a correspondingly sized Bach-type Savonius turbine using the same electrical generator and measurement instrumentation in a wind tunnel. Experiments were performed for Reynolds numbers, based on blade chord, in the range 5 × 103 to 1 × 105, and for blade settings between −40° and +40o. The study shows that for the tip speed ratios that have been investigated, the Farrah vertical axis wind turbine design can only marginally outperform a corresponding two-bladed Bach-type Savonius turbine and then only when its blades are set to 40° pitch angle. The presence of a small inner cylinder, which rotates with the turbine, does not enhance its performance due to the fact that it is immersed in an extensive column of relatively static air.


2012 ◽  
Vol 225 ◽  
pp. 338-343 ◽  
Author(s):  
J.J. Miau ◽  
S.Y. Liang ◽  
R.M. Yu ◽  
C.C. Hu ◽  
T.S. Leu ◽  
...  

The concept of pitch control has been implemented in the design of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results presented in this paper. As found, the method of variable pitch control outperforms the one of fixed pitch control. The present results show that the former can make remarkable improvement on the starting torque as well as the aerodynamic characteristics at low tip speed ratios.


2014 ◽  
Vol 529 ◽  
pp. 296-302 ◽  
Author(s):  
Wei Zuo ◽  
Shun Kang

The aerodynamic performance and the bypass flow field of a vertical axis wind turbine under self-starting are investigated using CFD simulations in this paper. The influence of pitch angle variations on the performance of the wind turbine during self-starting is presented. A two-dimensional model of the wind turbine with three blades is employed. A commercial software FlowVision is employed in this paper, which uses dynamic Cartesian grid. The SST turbulence model is used for turbulence modeling, which assumes the flow full turbulent. Based on the comparison between the computed time-dependent variations of the rotation speed with the experimental data, the time-dependent variations of the torque are presented. The characteristics of self-starting of the wind turbine are analyzed with the pitch angle of 0o、-2oand 2o. The influence of pitch angle variations on two-dimensional unsteady viscous flow field through velocity contours is discussed in detail.


2005 ◽  
Vol 2005 (0) ◽  
pp. 268
Author(s):  
Takahiro KIWATA ◽  
Shinei TAKATA ◽  
Tetsuyoshi KITA ◽  
Toshihiro KITAMURA ◽  
Shigeo KIMURA ◽  
...  

2013 ◽  
Vol 2013.50 (0) ◽  
pp. 021101-021102
Author(s):  
Koji NAGAO ◽  
Takahiro KIWATA ◽  
Yoshiaki SAWADE ◽  
Yurie KOAMI ◽  
Takaaki KONO ◽  
...  

Author(s):  
Chien-Chang Chen ◽  
Cheng-Hsiung Kuo

This study employs the commercialized computational fluid dynamics software (Ansys/Fluent), with the user’s defined technique, to simulate the unsteady flow structures around the small-size vertical axis wind turbines (VAWT) with three straight blades. This study addresses the effects of the collective variations of the pitch angle (within ± 10°) on the performance of the VAWT system. The results of the transient (acceleration) stage will be employed to evaluate the self-starting ability. While the vertical axis wind turbine (VAWT) reaches a steady rotating stage, the detailed flow structures, the vorticity fields, the pressure distributions around, and the forces on the airfoils at various azimuthal positions will be addressed. For the blades with a negative pitch angle (θ = −10°), has the peak value of the moment coefficient within one revolution is the largest which will provide the largest starting torque to drive the VAWT system more easily. However, in this case, the moment coefficients are negative within some part of the period. This cancels part of the positive moment within one revolution, thus the efficiency is reduced at this pitch angle. For the case with positive pitch angle (θ = 10°), the area under the moment coefficient curve is the smallest and the time elapse of large moment coefficient is relatively short. Thus the efficiency and the starting torque are the lowest among thee pitch angles.


Sign in / Sign up

Export Citation Format

Share Document