scholarly journals Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices

2018 ◽  
Vol 30 (9) ◽  
pp. 096603 ◽  
Author(s):  
Konstantin V. Koshel ◽  
Jean N. Reinaud ◽  
Giorgio Riccardi ◽  
Eugene A. Ryzhov
1996 ◽  
Vol 314 ◽  
pp. 1-25 ◽  
Author(s):  
Hassan Aref ◽  
Mark A. Stremler

Motivated by observations of Williamson & Roshko of the wake of an oscillating cylinder with three vortices per cycle, and by the analyses of Rott and Aref of the motion of three vortices with vanishing net circulation on the unbounded plane, the integrable problem of three interacting, periodic vortex rows is solved. The problem is ‘mapped’ onto a problem of advection of a passive particle by a certain set of fixed point vortices. The results of this mapped problem are then re-interpreted in terms of the motion of the vortices in the original problem. A rather complicated structure of the solution space emerges with a surprisingly large number of regimes of motion, some of them somewhat counter-intuitive. Representative cases are analysed in detail, and a general procedure is indicated for all cases. We also trace the bifurcations of the solutions with changing linear momentum of the system. For rational ratios of the vortex circulations all motions are periodic. For irrational ratios this is no longer true. The point vortex results are compared to the aforementioned wake experiments and appear to shed light on the experimental observations. Many additional possibilities for the wake dynamics are suggested by the analysis.


2018 ◽  
Vol 30 (9) ◽  
pp. 096604 ◽  
Author(s):  
Jean N. Reinaud ◽  
Konstantin V. Koshel ◽  
Eugene A. Ryzhov

2019 ◽  
Vol 874 ◽  
Author(s):  
Vikas S. Krishnamurthy ◽  
Miles H. Wheeler ◽  
Darren G. Crowdy ◽  
Adrian Constantin

A new family of exact solutions to the two-dimensional steady incompressible Euler equation is presented. The solutions provide a class of hybrid equilibria comprising two point vortices of unit circulation – a point vortex pair – embedded in a smooth sea of non-zero vorticity of ‘Stuart-type’ so that the vorticity $\unicode[STIX]{x1D714}$ and the stream function $\unicode[STIX]{x1D713}$ are related by $\unicode[STIX]{x1D714}=a\text{e}^{b\unicode[STIX]{x1D713}}-\unicode[STIX]{x1D6FF}(\boldsymbol{x}-\boldsymbol{x}_{0})-\unicode[STIX]{x1D6FF}(\boldsymbol{x}+\boldsymbol{x}_{0})$, where $a$ and $b$ are constants. We also examine limits of these new Stuart-embedded point vortex equilibria where the Stuart-type vorticity becomes localized into additional point vortices. One such limit results in a two-real-parameter family of smoothly deformable point vortex equilibria in an otherwise irrotational flow. The new class of hybrid equilibria can be viewed as continuously interpolating between the limiting pure point vortex equilibria. At the same time the new solutions continuously extrapolate a similar class of hybrid equilibria identified by Crowdy (Phys. Fluids, vol. 15, 2003, pp. 3710–3717).


2013 ◽  
Vol 102 (4) ◽  
pp. 44004 ◽  
Author(s):  
E. A. Ryzhov ◽  
K. V. Koshel
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 943
Author(s):  
Henryk Kudela

In this paper, the motion of the n-vortex system as it collapses to a point in finite time is studied. The motion of vortices is described by the set of ordinary differential equations that we are able to solve analytically. The explicit formula for the solution demands the initial location of collapsing vortices. To find the collapsing locations of vortices, the algebraic, nonlinear system of equations was built. The solution of that algebraic system was obtained using Newton’s procedure. A good initial iterate needs to be provided to succeed in the application of Newton’s procedure. An unconstrained Leverber–Marquart optimization procedure was used to find such a good initial iterate. The numerical studies were conducted, and numerical evidence was presented that if in a collapsing system n=50 point vortices include a few vortices with much greater intensities than the others in the set, the vortices with weaker intensities organize themselves onto the vortex sheet. The collapsing locations depend on the value of the Hamiltonian. By changing the Hamiltonian values in a specific interval, the collapsing curves can be obtained. All points on the collapse curves with the same Hamiltonian value represent one collapsing system of vortices. To show the properties of vortex sheets created by vortices, the passive tracers were used. Advection of tracers by the velocity induced by vortices was calculated by solving the proper differential equations. The vortex sheets are an impermeable barrier to inward and outward fluxes of tracers. Arising vortex structures are able to transport the passive tracers. In this paper, several examples showing the diversity of collapsing structures with the vortex sheet are presented. The collapsing phenomenon of many vortices, their ability to self organize and the transportation of the passive tracers are novelties in the context of point vortex dynamics.


2018 ◽  
Vol 858 ◽  
pp. 917-948 ◽  
Author(s):  
Darwin Darakananda ◽  
Jeff D. Eldredge

Inviscid vortex models have been demonstrated to capture the essential physics of massively separated flows past aerodynamic surfaces, but they become computationally expensive as coherent vortex structures are formed and the wake is developed. In this work, we present a two-dimensional vortex model in which vortex sheets represent shear layers that separate from sharp edges of the body and point vortices represent the rolled-up cores of these shear layers and the other coherent vortices in the wake. We develop a circulation transfer procedure that enables each vortex sheet to feed its circulation into a point vortex instead of rolling up. This procedure reduces the number of computational elements required to capture the dynamics of vortex formation while eliminating the spurious force that manifests when transferring circulation between vortex elements. By tuning the rate at which the vortex sheets are siphoned into the point vortices, we can adjust the balance between the model’s dimensionality and dynamical richness, enabling it to span the entire taxonomy of inviscid vortex models. This hybrid model can capture the development and subsequent shedding of the starting vortices with insignificant wall-clock time and remain sufficiently low-dimensional to simulate long-time-horizon events such as periodic bluff-body shedding. We demonstrate the viability of the method by modelling the impulsive translation of a wing at various fixed angles of attack, pitch-up manoeuvres that linearly increase the angle of attack from $0^{\circ }$ to $90^{\circ }$, and oscillatory pitching and heaving. We show that the proposed model correctly predicts the dynamics of large-scale vortical structures in the flow by comparing the distributions of vorticity and force responses from results of the proposed model with a model using only vortex sheets and, in some cases, high-fidelity viscous simulation.


2001 ◽  
Vol 8 (1/2) ◽  
pp. 1-7 ◽  
Author(s):  
V. P. Goncharov ◽  
V. I. Pavlov

Abstract. Two-dimensional vortex pairs are frequently observed in geophysical conditions, for example, in a shelf zone of the ocean near river mouths. The main aims of the work are to estimate the space scales of such vortex structures, to analyze possible scenarios of vortex pair motion and to give the qualitative classification of their trajectories. We discuss some features of the motion of strong localized vorticity concentrations in a given flow in the presence of boundaries. The analyses are made in the framework of a 2D point vortex mo-del with an open polygonal boundary. Estimations are made for the characteristic parameters of dipole vortex structures emitted from river mouths into the open ocean.


Author(s):  
Takashi Sakajo

A two-dimensional potential flow in an unbounded domain with two parallel plates is considered. We examine whether two free point vortices can be trapped near the two plates in the presence of a uniform flow and observe whether these stationary point vortices enhance the force on the plates. The present study is an extension of previously published work in which a free point vortex over a single plate is investigated. The flow problem is motivated by an airfoil design problem for the double wings. Moreover, it also contributes to a design problem for an efficient wind turbine with vertical blades. In order to obtain the point-vortex equilibria numerically, we make use of a linear algebraic algorithm combined with a stochastic process, called the Brownian ratchet scheme. The ratchet scheme allows us to capture a family of stationary point vortices in multiply connected domains with ease. As a result, we find that stationary point vortices exist around the two plates and they enhance the downward force and the counter-clockwise rotational force acting on the two plates.


2015 ◽  
Vol 779 ◽  
pp. 144-180 ◽  
Author(s):  
Jean N. Reinaud ◽  
Xavier Carton

We examine the interactions between two three-dimensional quasi-geostrophic hetons. The hetons are initially translating towards one another. We address the effect of the vertical distance between the two poles (vortices) constituting each heton on the interaction. We also examine the influence of the horizontal separation between the poles within each heton. In this investigation, the two hetons are facing each other. Two configurations are possible depending on the respective locations of the like-signed poles of the hetons. When they lie at the same depth, we refer to the configuration as symmetric; the antisymmetric configuration corresponds to opposite-signed poles at the same depth. The first step in the investigation uses point vortices to represent the poles of the hetons. This approach allows us to rapidly browse the parameter space and to estimate the possible heton trajectories. For a symmetric pair, the hetons either reverse their trajectory or recombine and escape perpendicularly depending of their horizontal and vertical offsets. On the other hand, antisymmetric hetons recombine and escape perpendicularly as same-depth dipoles. In a second part, we focus on finite core hetons (with finite volume poles). These hetons can deform and may be sensitive to horizontal-shear-induced deformations, or to baroclinic instability. These destabilisations depend on the vertical and horizontal offsets between the various poles, as well as on their width-to-height aspect ratios. They can modify the volume of the poles via vortex merger, breaking and/or shearing out; they compete with the advective evolution observed for singular (point) vortices. Importantly, hetons can break down or reconfigure before they can drift away as expected from a point vortex approach. Thus, a large variety of behaviours is observed in the parameter space. Finally, we briefly illustrate the behaviour of tall hetons which can be unstable to an azimuthal mode $l=1$ when many vertical modes of deformation are present on the heton.


Sign in / Sign up

Export Citation Format

Share Document