Obtaining high-quality welded joints of aluminum alloys 1420 and 1424 made by laser welding and post heat treatment

Author(s):  
A. M. Orishich ◽  
A. G. Malikov ◽  
I. S. Mesenzova ◽  
N. A. Pavlov ◽  
E. V. Karpov
2021 ◽  
Vol 2079 (1) ◽  
pp. 012022
Author(s):  
Yongchao Jian ◽  
Yan Shi

Abstract Because of the uneven distribution of reinforcement particles in the molten pool during laser welding of SiCp/6061Al composites with powder, the effect of pulse frequency on the homogenization was studied in this paper. The pulse frequency of welding is changed and the macro morphology of the weld is studied by metallographic microscope. The particle uniformity of reinforcing phase and the porosity of molten pool at different frequencies were compared. The tensile strength of welded joints at different frequencies was tested by universal tensile machine. Finally, when the pulse frequency is 160Hz, the particle distribution of reinforcing phase is the most uniform and the tensile strength is the largest. The tensile strength reaches 267.06MPa, reaching 69.1% of the base metal. When the pulse frequency is 320Hz, the porosity of the weld is the lowest, reaching 1.75%.


2015 ◽  
Vol 60 (3) ◽  
pp. 1807-1812
Author(s):  
M. Stolecki ◽  
H. Bijok ◽  
Ł. Kowal ◽  
J. Adamiec

Abstract This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301) austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614), and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.


2012 ◽  
Vol 32 ◽  
pp. 1139-1146 ◽  
Author(s):  
W. Boonchouytan ◽  
T. Ratanawilai ◽  
P. Muangjunburee

2020 ◽  
pp. 73-79
Author(s):  
Lechosław Tuz

The use of technologically advanced structural materials entails the necessity of adjusting typical welding processes to special requirements resulting from the limited weldability of certain material groups. Difficulties obtaining high-quality joints may be the consequence of deteriorated mechanical properties and structural changes in materials (beyond requirements of related standards). One of the aforementioned materials is steel characterised by a guaranteed yield point of 1300 MPa, where high strength is obtained through the addition of slight amounts of carbide-forming elements and the application of complex heat treatment processes. A heat input during welding may worsen the aforesaid properties not only in the weld but also in the adjacent material. The tests discussed in the article revealed that the crucial area was that heated below a temperature of 600°C, where the hardness of the material decreased from approximately 520 HV to 330 HV.


Author(s):  
Ajay A. Kardak ◽  
M. A. Wahab

Aluminum alloys because of their high strength to weight ratio have various applications as structural material in railways, ship building, aeronautics, construction, and consumer appliances. This increased use of aluminum alloys calls for more efficient and reliable welding processes which has always represented a great challenge for designers and technologists. AA-6061 Aluminum Alloy (Al-Mg-Si) is widely used in the aircraft industry and has gathered wider acceptance in the fabrication of light weight structures. The preferred welding process for this alloy is Tungsten Inert Gas (TIG) process due to their comparatively easier applicability, high yield, and better economy. Major difficulties are associated with this type of welding process, such as, the presence of tenacious oxide layer, high coefficient of thermal expansion, solidification shrinkage, solubility of hydrogen, and other gases in the molten state. Furthermore, problems such as decay of mechanical properties due to phase transformation and softening can occur in the heat-affected-zone (HAZ). Post weld heat treatment can be used to improve the strength of the HAZ for heat-treatable alloys like AA-6061. Hence, the major objectives of this work was to conduct a systematic study and gain an in-depth understanding of the effect of post-weld heat treatment (PWHT) of these joints on tensile properties, micro hardness, microstructure, and fracture surface morphology of butt-welded joints. It was found that of all the PWHT processes, Age-hardening (AH) resulted in superior mechanical properties and hardness. The reason for this enhanced strength has also been studied from metallurgical point of view. Microstructure and fracture surface of the tensile tested specimens were studied using light microscope and scanning electron microscope, respectively. Correlation has been drawn between the tensile test results, microhardness and the metallurgical results. It was found that the uniformly dense precipitation of fine Mg2Si, and the lack of precipitate-free zone could be the reason for the superior results found.


2019 ◽  
Vol 765 ◽  
pp. 138302 ◽  
Author(s):  
Alexander Malikov ◽  
Anatoliy Orishich ◽  
Natalia Bulina ◽  
Evgenij Karpov ◽  
Marat Sharafutdinov

Sign in / Sign up

Export Citation Format

Share Document