Hot rolling effects on as-cast aluminum matrix nanocomposites reinforced by nano-sized ceramic powders

2019 ◽  
Author(s):  
S. Behnamfard ◽  
R. Taherzadeh Mousavian ◽  
R. Azari Khosroshahi ◽  
D. Brabazon
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 989
Author(s):  
Donghyun Lee ◽  
Junghwan Kim ◽  
Sang-Kwan Lee ◽  
Yangdo Kim ◽  
Sang-Bok Lee ◽  
...  

In this study, to evaluate the effect of boron carbide (B4C) addition on the wear performance of aluminum (Al), Al6061 and 5, 10, and 20 vol.% B4C/Al6061 composites were manufactured using the stir casting and hot rolling processes. B4C particles were randomly dispersed during the stir casting process; then, B4C particles were arranged in the rolling direction using a hot rolling process to further improve the B4C dispersion and wear resistance of the composites. Furthermore, a continuous interfacial layer between B4C and the Al6061 matrix was generated by diffusion of titanium (Ti) and chromium (Cr) atoms contained in the Al6061 alloy. Wear depth and width of the composites decreased with increasing B4C content. Furthermore, with B4C addition, coefficient of friction (COF) improved as compared with that of Al6061. The results indicate that interface-controlled, well-aligned B4C particles in the friction direction can effectively increase the wear properties of Al alloys and improve their hardness.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Payodhar Padhi ◽  
Sachikanta Kar

Addition of nano particles, even in quantities as small as 2 weight percent can enhance the hardness or yield strength by a factor as high as 2. There are several methods for the production of metal matrix nanocomposites including mechanical alloying, vertex process, and spray deposition and so forth. However, the above processes are expensive. Solidification processing is a relatively cheaper route. During solidification processing, nano particulates tend to agglomerate as a result of van der Waals forces and thus proper dispersion of the nano particulate in metal matrix is a challenge. In the present study a noncontact method, where the ultrasonic probe is not in direct contact with the liquid metal, was attempted to disperse nanosized SiC particulates in aluminum matrix. In this method, the mold was subjected to ultrasonic vibration. Hardness measurements and microstructural studies using HRTEM were carried out on samples taken from different locations of the nanocomposite ingot cast by this method.


2017 ◽  
Vol 30 (10) ◽  
pp. 973-982 ◽  
Author(s):  
Hamed Asgharzadeh ◽  
Hamid Faraghi ◽  
Hyoung Seop Kim

2021 ◽  
Vol 87 (5) ◽  
pp. 34-42
Author(s):  
N. B. Podymova ◽  
I. E. Kalashnikov ◽  
L. I. Kobeleva

One of the most critical manufacturing defects of cast metal-matrix composites is a non-uniform porosity distribution over the composite volume. Unevenness of the distribution leads not only to local softening, but also plays a key role in the evolution of the damage process under the external loads. The goal of the study is to apply a new laser-ultrasonic method to in-situ study of a local porosity in reactive cast aluminum-matrix composites. The proposed method is based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in the studied materials. Laser excitation and piezoelectric detection of ultrasound were carried out using a laser-ultrasonic transducer. Two series of reactive cast aluminum-matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti added with synthetic diamond nanoparticles. It is shown that for both series of the composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series is approximated by the same nearly linear function regardless of the size and fraction of reinforcing particles. This function was used to derive the formula for calculation of the local porosity in the studied composites. The developed technique seems to be promising in revealing potentially dangerous domains with high porosity in reactive-cast metal-matrix composites.


2021 ◽  
Vol 2021 (10) ◽  
pp. 1369-1374
Author(s):  
Yijin Chen ◽  
Yu. A. Kurganova ◽  
A. I. Plokhikh ◽  
S. D. Karpukhin ◽  
S. P. Shcherbakov

2011 ◽  
pp. 737-744
Author(s):  
Michael P. De Cicco ◽  
John H. Perepezko ◽  
Lih-Sheng Turng ◽  
Xiaochun Li

Sign in / Sign up

Export Citation Format

Share Document