The effects of pilot injection timing on the combustion process and exhaust emissions in dual-fuel diesel engine using biodiesel-CNG at high load

2019 ◽  
Author(s):  
Ahmad Arbi Trihatmojo ◽  
Dori Yuvenda ◽  
Bambang Sudarmanta
2018 ◽  
Vol 234 ◽  
pp. 03007
Author(s):  
Plamen Punov ◽  
Tsvetomir Gechev ◽  
Svetoslav Mihalkov ◽  
Pierre Podevin ◽  
Dalibor Barta

The pilot injection strategy is a widely used approach for reducing the noise of the combustion process in direct injection diesel engines. In the last generation of automotive diesel engines up to several pilot injections could occur to better control the rate of heat release (ROHR) in the cylinder as well as the pollutant formation. However, determination of the timing and duration for each pilot injection needs to be precisely optimised. In this paper an experimental study of the pilot injection strategy was conducted on a direct injection diesel engine. Single and double pilot injection strategy was studied. The engine rated power is 100 kW at 4000 rpm while the rated torque is 320 Nm at 2000 rpm. An engine operating point determined by the rotation speed of 1400 rpm and torque of 100 Nm was chosen. The pilot and pre-injection timing was widely varied in order to study the influence on the combustion process as well as on the fuel consumption.


2021 ◽  
Vol 312 ◽  
pp. 08005
Author(s):  
Antonio Caricato ◽  
Antonio Paolo Carlucci ◽  
Antonio Ficarella ◽  
Luciano Strafella

In a previous work, the effectiveness of late pilot injection on improving combustion behaviour – in terms of fuel conversion efficiency and pollutant emission levels – in a diesel/natural gas dual-fuel engine was assessed. Then, an additional set of experiments was performed, aiming at speeding up the combustion process possibly without penalizing NOx levels. Therefore, hydrogen was added to natural gas in a percentage equal to 10%. Results show that hydrogen addition has a significant effect on the combustion development specially during the early stage of combustion: ignition delay is shortened and combustion centre is advanced, while the combustion duration increases when pilot injection timing is set to conventional values, while remains basically unchanged for late timings. Fuel conversion efficiency is only slightly penalized when hydrogen is added. Moreover, it was confirmed that, in general, combustion strategy with late pilot injection timing does not penalize fuel conversion efficiency; indeed, in some cases, it actually increases. Concerning regulated emission levels, it is again proven that late pilot injection does not penalize pollutant production: the hydrocarbons and carbon monoxide reduce as pilot injection is delayed, probably due to the higher temperatures reached into the cylinder during most part of the expansion stroke. Moreover, adding hydrogen always reduces their levels. Concerning NOx, they are drastically reduced delaying pilot injection; as expected, hydrogen addition promotes NOx formation, but the increase, evident with conventional pilot injection timings, becomes marginal with late injection strategy. Therefore, combustion strategy performance with late pilot injection in dual-fuel diesel/natural gas combustion conditions can be further improved with 10% hydrogen addition to natural gas.


Author(s):  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
Miroslaw L Wyszynski ◽  
Anthanasios Tsolakis ◽  
Hongming Xu

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


Sign in / Sign up

Export Citation Format

Share Document