scholarly journals Temperature-dependent dielectric and piezoelectric response of ferroelectrics from first principles

1998 ◽  
Author(s):  
K. M. Rabe ◽  
E. Cockayne
Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Pavel A. Korzhavyi ◽  
Jing Zhang

A simple modeling method to extend first-principles electronic structure calculations to finite temperatures is presented. The method is applicable to crystalline solids exhibiting complex thermal disorder and employs quasi-harmonic models to represent the vibrational and magnetic free energy contributions. The main outcome is the Helmholtz free energy, calculated as a function of volume and temperature, from which the other related thermophysical properties (such as temperature-dependent lattice and elastic constants) can be derived. Our test calculations for Fe, Ni, Ti, and W metals in the paramagnetic state at temperatures of up to 1600 K show that the predictive capability of the quasi-harmonic modeling approach is mainly limited by the electron density functional approximation used and, in the second place, by the neglect of higher-order anharmonic effects. The developed methodology is equally applicable to disordered alloys and ordered compounds and can therefore be useful in modeling realistically complex materials.


RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44373-44381
Author(s):  
Xiaozhe Wang ◽  
Qi Wang ◽  
Zhijun Chai ◽  
Wenzhi Wu

The thermal properties of FAPbBr3 perovskite nanocrystals (PNCs) is investigated by use of temperature-dependent steady-state/time-resolved photoluminescence and first-principle calculations.


2017 ◽  
Vol 53 (1) ◽  
pp. 1-7 ◽  
Author(s):  
J. Wang ◽  
Y. Du ◽  
X. Tao ◽  
Y. Ouyang ◽  
L. Zhang ◽  
...  

Systematic first-principles calculations of the single crystal elastic stiffness constants (cij?s) and the polycrystalline aggregates including bulk modulus (B), shear modulus (G), Young?s modulus (E) have been performed for series binary and ternary Al compounds at 0 K. In addition, the temperature-dependent elastic properties for some technologically important phases are calculated. The cij?s are calculated by means of an efficient strain-stress method. Phonon density of states or Debye model is employed to calculate the linear thermal expansion, which is then used to calculate the temperature dependence of elastic properties. The calculated temperature-dependent elastic properties are compiled in the format of CALPHAD (CALculation of PHAse Diagram) type formula. The presently computed elastic properties for Al compounds are needed for simulation of microstructure evolution of commercial Al alloys during series of processing route.


RSC Advances ◽  
2016 ◽  
Vol 6 (32) ◽  
pp. 27136-27142 ◽  
Author(s):  
Xurui Li ◽  
Junyong Wang ◽  
Jinzhong Zhang ◽  
Yawei Li ◽  
Zhigao Hu ◽  
...  

The temperature-dependent phonon spectra and magnetoresistance of CuCr1−xMgxO2 films have been studied, combined with first-principles calculations.


2020 ◽  
Vol 22 (15) ◽  
pp. 7984-7994
Author(s):  
Lei Miao ◽  
Ying Peng ◽  
Dianhui Wang ◽  
Jihui Liang ◽  
Chaohao Hu ◽  
...  

Synchrotron XRD Rietveld refinement is combined with first-principles calculations to probe the effect of W doping on the IMT mechanism in VO2 nanorods, providing insights into the connection between atomic-scale phenomena and macro-scale properties.


Sign in / Sign up

Export Citation Format

Share Document