Inverse cascades in two‐dimensional compressible turbulence. I. Incompressible forcing at low Mach number

1990 ◽  
Vol 2 (8) ◽  
pp. 1481-1486 ◽  
Author(s):  
J. P. Dahlburg ◽  
R. B. Dahlburg ◽  
J. H. Gardner ◽  
J. M. Picone
2014 ◽  
Vol 144 (6) ◽  
pp. 1127-1154 ◽  
Author(s):  
Taoufik Hmidi ◽  
Samira Sulaiman

We study the low-Mach-number limit for the two-dimensional isentropic Euler system with ill-prepared initial data belonging to the critical Besov space . By combining Strichartz estimates with the special structure of the vorticity, we prove that the lifespan of the solutions goes to infinity as the Mach number goes to zero. We also prove strong convergence results of the incompressible parts to the solution of the incompressible Euler system.


A line vortex which has uniform vorticity 2Ω 0 in its core is subjected to a small two-dimensional disturbance whose dependence on polar angle is e imθ . The stability is examined according to the equations of compressible, inviscid flow in a homentropic medium. The boundary condition at infinity is that of outgoing acoustic waves, and it is found that this capacity to radiate leads to a slow instability by comparison with the corresponding incompressible vortex which is stable. Numerical eigenvalues are computed as functions of the mode number m and the Mach number M based on the circumferential speed of the vortex. These are compared with an asymptotic analysis for the m = 2 mode at low Mach number in which it is found that the growth rate is (π/ 32) M 4 Ω 0 in good agreement with the numerical results.


1972 ◽  
Vol 51 (2) ◽  
pp. 357-362 ◽  
Author(s):  
D. G. Crighton

The two-dimensional low Mach number sound field from the passage of a line vortex around the edge of a rigid half plane is calculated by singular perturbation methods. Simple exact expressions are given for the space-time variation of the acoustic field, and for the total radiated energy and its frequency spectrum. These expressions show in particular that the effect of the half plane is to increase the energy radiated by a nearby vortical flow by M−3, where M is a characteristic Mach number.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Leila Issa ◽  
Issam Lakkis

We present reduced-order models of unsteady low-Mach-number ideal gas flows in two-dimensional rectangular microchannels subject to first-order slip-boundary conditions. The pressure and density are related by a polytropic process, allowing for isothermal or isentropic flow assumptions. The Navier–Stokes equations are simplified using low-Mach-number expansions of the pressure and velocity fields. Up to first order, this approximation results in a system that is subject to no-slip condition at the solid boundary. The second-order system satisfies the slip-boundary conditions. The resulting equations and the subsequent pressure-flow-rate relationships enable modeling the flow using analog circuit components. The accuracy of the proposed models is investigated for steady and unsteady flows in a two-dimensional channel for different values of Mach and Knudsen numbers.


Author(s):  
Hyungro Lee ◽  
Einkeun Kwak ◽  
Seungsoo Lee

In this study, two commonly used numerical methods for the analysis of incompressible flows (or low Mach number flows), Chorins’ artificial compressibility method and Wiess and Smith’s preconditioning method are compared. Also, the convergence characteristics of two methods are numerically investigated for two-dimensional laminar and turbulent flows. Although the two methods have similar governing equations, the eigensystems and other details are very different. The eigensystems of the artificial compressibility method and the preconditioning method are analytically examined. An artificial compressibility code that solves the incompressible RANS (Reynolds Averaged Navier-Stokes) equations is newly developed for the study. An artificial compressibility code and a well-verified existing low Mach number code uses Roe’s approximate Riemann solver in conjunction with a cell centered finite volume method. Using MUSCL extrapolation with nonlinear limiters, 2nd order spatial accuracy is achieved while maintaining TVD (total variation diminishing) property. AF-ADI (approximate factorization-alternate direction implicit) method is used to get the steady solution for both codes. Menter’s k–ω SST turbulence model is used for the analysis of turbulent flows. Navier-Stokes equations and the turbulence model equations are solved in a loosely coupled manner.


Author(s):  
Leila Issa ◽  
Issam Lakkis

We present reduced order models of unsteady low Mach number isothermal ideal gas flows in two-dimensional rectangular microchannels subject to first order slip boundary conditions. The Navier-Stokes equations are simplified using Low Mach Number expansions of the pressure and velocity fields. This approximation allows decoupling the density from spatial pressure variations, thus simplifying the momentum equation. The resulting diffusion equation and the subsequent pressure-flow-rate relationship enables modeling the flow using analog circuit components. The accuracy of the proposed models is investigated for steady and unsteady flows in a two-dimensional channel for different values of Reynolds and Knudsen numbers.


Sign in / Sign up

Export Citation Format

Share Document