Transmission electron microscopy and high resolution electron microscopy studies of shallow (Rp∼20 nm) As and B implanted and electron beam annealed silicon

1984 ◽  
Vol 44 (11) ◽  
pp. 1081-1083 ◽  
Author(s):  
G. B. McMillan ◽  
David J. Smith ◽  
J. P. Gowers ◽  
H. Ahmed
2009 ◽  
Vol 1242 ◽  
Author(s):  
R. Esparza ◽  
A. Aguilar ◽  
A. Escobedo-Morales ◽  
C. Patiño-Carachure ◽  
U. Pal ◽  
...  

ABSTRACTZinc peroxide (ZnO2) nanocrystals were directly produced by hydrothermal process. The nanocrystals were synthesized using zinc acetate as precursor and hydrogen peroxide as oxidant agent. The ZnO2 powders were characterized by X-ray powder diffraction and transmission electron microscopy. The results of transmission electron microscopy indicated that the ZnO2powders consisted of nanocrystals with diameters below to 20 nm and a faceted morphology. High resolution electron microscopy observations have been used in order to the structural characterization. ZnO2 nanocrystals exhibit a well-crystallized structure.


1990 ◽  
Vol 183 ◽  
Author(s):  
C. P. Burmester ◽  
S. Quong ◽  
L. T. Wille ◽  
R. Gronsky ◽  
B. T. Ahn ◽  
...  

AbstractHigh resolution electron microscopy is used to investigate the effect of electron irradiation induced oxygen loss on the states of partial order in YBa2Cu3Oz. Contrast effects visible in the [001] zone image as a result of the degree of the out-of-plane correlation of these ordered states are investigated. Using statistical simulations to aid in the analysis of the HREM images, an interpretation based on a kinetically limited evolution of the variation of long range [001] ordering is proposed.


1993 ◽  
Vol 8 (5) ◽  
pp. 1019-1027 ◽  
Author(s):  
F. Hakkens ◽  
A. De Veirman ◽  
W. Coene ◽  
Broeder F.J.A. den

The structure of Co/Pd and Co/Au (111) multilayers is studied using transmission electron microscopy and high resolution electron microscopy. We focused on microstructure, atomic stacking (especially at the interfaces), and coherency, as these are structural properties that have considerable magnetic effects. A columnar structure with a strong curvature of the multilayer influenced by substrate temperature during growth is observed. High resolution imaging shows numerous steps at the interfaces of the multilayer structure and the presence of misfit dislocations. In bright-field images, periodic contrast fringes are observed at these interfaces as the result of moiré interference. These moiré fringes are used to study the misfit relaxation at the interfaces, whereas electron diffraction gives the average relaxation over the whole layer. Both measurements determined that, for Co/Pd as well as Co/Au multilayers, 80–85% of the misfit is relaxed and 20–15% remains in the form of strain, independent of the Co layer thickness in the regime studied.


1998 ◽  
Vol 540 ◽  
Author(s):  
A. C. Nicol ◽  
M. L. Jenkins ◽  
N. Wanderka ◽  
C. Abromeit

AbstractThe stability of Cu precipitates in an Fe-1.3wt%Cu alloy under 300 keV Fe+ion irradiation has been investigated using transmission electron microscopy and high-resolution electron microscopy. The irradiations were carried out between room temperature and 550°C at displacement rates of 103 to 10−2 dpa(s)−1 to fluences of up to 30 dpa. Copper precipitates were found to keep their shape but decrease in size under all irradiation conditions. The results are discussed within the framework of a competitive process between irradiation induced ballistic destruction of precipitates by cascades and irradiation-enhanced precipitation.


1991 ◽  
Vol 238 ◽  
Author(s):  
Elsie C. Urdaneta ◽  
David E. Luzzi ◽  
Charles J. McMahon

ABSTRACTBismuth-induced grain boundary faceting in Cu-12 at ppm Bi polycrystals was studied using transmission electron microscopy (TEM). The population of faceted grain boundaries in samples aged at 600°C was observed to increase with heat treatment time from 15min to 24h; aging for 72h resulted in de-faceting, presumably due to loss of Bi from the specimen. The majority of completely faceted boundaries were found between grains with misorientation Σ=3. About 65% of the facets of these boundaries were found to lie parallel to crystal plane pairs of the type {111}1/{111]2- The significance of these findings in light of recent high resolution electron microscopy experiments is discussed.


1995 ◽  
Vol 382 ◽  
Author(s):  
S. J. Lloyd ◽  
R. E. Somekh ◽  
W. M. Stobbs

ABSTRACTIn-plane and out-of-plane lattice parameters were measured in a series of coherent Fe-Cu multilayers using non-axial high resolution electron microscopy (HREM). The results indicate that the multilayers are tetragonally distorted with the magnitude of the distortion varying with the thickness of the Fe component. These distortions preclude an understanding of the multilayer structure in terms of conventional elasticity theory. The breakdown of epitaxy for thicker Fe layers was also investigated and it was found that the b.c.c. Fe grew with [110] parallel to [001] of the coherent f.c.c. multilayer.


1992 ◽  
Vol 295 ◽  
Author(s):  
Richard W. Fonda ◽  
David E. Luzzi

AbstractGrain boundaries in quenched and aged Cu-i.5%Sb were examined with Auger electron microscopy, transmission electron microscopy, and high resolution electron microscopy. The ∑=3 grain boundaries are strongly faceted, with the facets lying primarily along the coincident (111) planes of the two grains. The grain boundaries are enriched in antimony, as demonstrated by both AES and HREM. HREM images of the ∑=3 (111) ║ (111) grain boundary differ from those of the Cu-Bi ∑ =3 (111) ║ (111) grain boundary in the lack of a significant grain boundary expansion to accommodate the excess solute at the boundary. A preliminary investigation of the atomic structure of the ∑=3 (111) ║ (111) facet by HREM and multislice calculations is presented.


Sign in / Sign up

Export Citation Format

Share Document