Molecular beam epitaxial growth and transmission electron microscopy studies of thin GaAs/InAs(100) multiple quantum well structures

1985 ◽  
Vol 46 (10) ◽  
pp. 983-985 ◽  
Author(s):  
F. J. Grunthaner ◽  
M. Y. Yen ◽  
R. Fernandez ◽  
T. C. Lee ◽  
A. Madhukar ◽  
...  
1986 ◽  
Vol 90 ◽  
Author(s):  
N. Magnea ◽  
F. Dal'bo ◽  
J. L. Pautrat ◽  
A. Million ◽  
L. Di Cioccio ◽  
...  

ABSTRACTCD1−xZnxTe alloys of various composition have been grown by the Molecular Beam Epitaxy Technique and characterized by Transmission Electron Microscopy. C(V) measurements and photoluminescence spectroscopy techniques. The quality of the thick layers is comparable to that of bulk material. Thin strained layers have also been grown whose interfaces are structurally good. The recombination within a CdTe well confined between Cd1−xZnxTe barriers is dominated by intrinsic processes.


1998 ◽  
Vol 13 (12) ◽  
pp. 3571-3579 ◽  
Author(s):  
U. Kaiser ◽  
S. B. Newcomb ◽  
W. M. Stobbs ◽  
M. Adamik ◽  
A. Fissel ◽  
...  

The effects of different growth parameters on the microstructure of the SiC films formed during simultaneous two-source molecular-beam-epitaxial (MBE) deposition have been investigated. Substrate temperatures as low as 750–900 °C have been used. The relationship between a number of different growth morphologies and deposition conditions has been established. The formation of single-crystal 3C films has been found to occur at low growth rates but within a limited Si: C adatom ratio. A combination of transmission electron microscopy (TEM) and atomic force microscopy (AFM) has been used to examine the different films, and the results of these investigations are described.


1991 ◽  
Vol 237 ◽  
Author(s):  
Mohan Krishnamurthy ◽  
M. Wassermeier ◽  
H. Weman ◽  
J. L. Merz ◽  
P. M. Petroffa

ABSTRACTA study of the molecular beam epitaxial (MBE) growth on singular and vicinal (110) surfaces of GaAs is presented. Quantum well structures and tilted superlattices (TSL) were grown on substrates misoriented 0.5°-2° towards the nearest [010] and [111]A azimuths at growth temperatures ranging from 450° C to 600° C under different growth conditions. The structures were characterized by Nomarski optical microscopy, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy.Two types of faceting were observed on the surfaces. The structures grown at temperatures above 540°C and As beam fluxes below l×10-5 torr showed V-shaped facets pointing in the [001] direction and are attributed to As deficient island growth. Lower temperatures and higher As beam fluxes lead to surfaces with microfacets that are elongated along the respective step directions on the vicinal surface and are due to step bunching during growth. Their density and height decrease with decreasing vicinal angle and they disappear on the singular (110) surface. The photoluminescence of the GaAs quantum wells grown on these samples is redshifted with respect to that of the quantum wells grown on the flat surface. This is being ascribed to the fact that on the vicinal surface, the recombination takes place at the facets where the quantum wells are wider.The contrast in the TEM images of the TSL show for the samples misoriented towards [010] that the lateral segregation to the step edges on this surface is appreciable. The TSL spacing and the tilt however show that during growth the vicinal surfaces tend towards a surface with smaller miscut.


Sign in / Sign up

Export Citation Format

Share Document