Combined Rayleigh and Raman scattering study of AlxGa1−xAs grown via molecular beam epitaxy under reflection high‐energy electron diffraction determined growth conditions

1988 ◽  
Vol 52 (1) ◽  
pp. 42-44 ◽  
Author(s):  
W. C. Tang ◽  
P. D. Lao ◽  
A. Madhukar ◽  
N. M. Cho
1996 ◽  
Vol 35 (Part 2, No. 3B) ◽  
pp. L366-L369 ◽  
Author(s):  
Hyun-Chul Ko ◽  
Shigeo Yamaguchi ◽  
Hitoshi Kurusu ◽  
Yoichi Kawakami ◽  
Shizuo Fujita ◽  
...  

1990 ◽  
Vol 216 ◽  
Author(s):  
T. P. Chin ◽  
B. W. Liang ◽  
H. Q. Hou ◽  
C. W. Tu

ABSTRACTInP and InAs (100) were grown by gas-source molecular-beam epitaxy (GSMBE) with arsine, phosphine, and elemental indium. Reflection high-energy-electron diffraction (RHEED) was used to monitor surface reconstructions and growth rates. (2×4) to (2×1) transition was observed on InP (100) as phosphine flow rate increased. (4×2) and (2×4) patterns were observed for In-stabilized and As-stabilized InAs surfaces, respectively. Both group-V and group-rn-induced RHEED oscillations were observed. The group-V surface desorption activation energy were measured to be 0.61 eV for InP and 0.19 eV for InAs. By this growth rate study, we are able to establish a precise control of V/HII atomic ratios in GSMBE of InP and InAs.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Costel Constantin ◽  
Abhijit Chinchore ◽  
Arthur R. Smith

ABSTRACTThe combination of the molecular beam epitaxy growth method with the in-situ reflection high energy electron diffraction measurements currently offers unprecedented control of crystalline growth materials. We present here a stoichiometric study of MnxSc(1-x) [x = 0, 0.03, 0.05, 0.15, 0.25, 0.35, and 0.50] thin films grown on MgO(001) substrates with this growth method. Reflection high energy electron diffraction and atomic force microscopy measurements reveal alloy behavior for all of our samples. In addition, we found that samples Mn0.10Sc0.90 and Mn0.50Sc0.50 display surface self-assembled nanowires with a length/width ratio of ~ 800 – 2000.


Sign in / Sign up

Export Citation Format

Share Document