scholarly journals Moisture sorption isotherm and shelf life of pumpkin and arrowroot starch-based instant porridge

2020 ◽  
Author(s):  
Agus Slamet ◽  
Danar Praseptiangga ◽  
Rofandi Hartanto ◽  
Samanhudi
REAKTOR ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 63 ◽  
Author(s):  
Rifa Nurhayati ◽  
Rosi Pratiwi ◽  
Baskara Katri Anandito ◽  
Ervika Rahayu Novita ◽  
Mukhammad Angwar

Chocomix chocolate beverage powder is one of the increased value-added cocoa products by Griya Cokelat Nglanggeran. The aimed of this study to estimate the shelf life using Accelerated Shelf Life Testing (ASLT) based on critical moisture content. Results showed that critical moisture content of Chocomix was 4.01 % (db). Moisture sorption isotherm (MSI) curve of Chocomix at 28oC was type II isothermic sigmoidal with 2 curves at the ranged of water activity between 0.24 and 0.68; and the equation was  y = 86.584X3 – 91.893X2 + 28.818X – 0.470. The calculation showed that estimated shelf life of Chocomix stored in 51.89 µm thick package at 28oC was 16.4 months.Keywords: chocolate powder, critical moisture content, moisture sorption isotherm, shelf life


2020 ◽  
Vol 8 (1) ◽  
pp. 23-28
Author(s):  
Riska Juliana ◽  
Rokhani Hasbullah ◽  
Sutrisno Suro Mardjan

Abstract In the processing, the red ginger powder was dried at 50°C. Red ginger powder is hygroscopic, so it is easy to absorb moisture. This research aims to determine (i) the isothermic absorption curve model in red ginger powder with different fineness modulus and (ii) the expiration date using the critical moisture content method in various types of packaging materials. Moisture sorption isotherm of red ginger powder was determined by the static gravimetric method at 300C. The relationship equilibrium moisture content between relative humidity (RH) is described by the Hasley, Chen-Clayton, Henderson, Caurie, and Oswin Models. The Estimated shelf life is determined using the ASLT (accelerated shelf-life testing) method and calculated using the Labuza model with a critical water content approach. The results obtained that moisture sorption isotherm red ginger powder has sigmoid shape a type II. Henderson is the model that illustrates the accuracy of the ISA curve of red ginger powder of 60 mesh particle size while the Chen-Clayton Model illustrates the accuracy of the ISA curve of red ginger powder of particle size of 80 mesh. The shelf life of red ginger powder is 60 mesh particle size and using HDPE, PP, and aluminum foil packaging which is stored at 75% RH and 300C temperature is 118.85 days, 467.63, and 609.26 days, respectively. The shelf life of red ginger powder 80 particle size is 148.17 days, 582.98 days and 759.54 days.  


2016 ◽  
Vol 8 (10) ◽  
pp. 98-104
Author(s):  
U. I. Meko Ayub ◽  
Berhimpon Siegfried ◽  
Ketut Suwetja I ◽  
G. Ijong Frans

Food Research ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 322-329
Author(s):  
F. Yeasmin ◽  
N.N. Hira ◽  
H. Rahman ◽  
M.N. Islam

The perishable herb ginger (Zingiber officinale) possesses natural aroma and different biologically active components which are beneficial for our health. This can be dried for preservation in pick season for shelf-life increment. This study studied the analysis of the chemical composition, moisture sorption isotherm, dehydration kinetics of ginger for preservation. Air drying was carried out using a cabinet dryer at different temperatures and thickness. According to the sorption isotherm study, monolayer moisture content (MMC) is higher as per Guggenheim-Anderson-DeBoer (GAB) equation compared to the Brunauer-Emmett-Teller (BET) equation. Drying rate increased with the increase in temperature at constant thickness while the adverse result was found with the increase in thickness at a constant temperature. Then, powder-based drinks were prepared by using five different percentages of ginger. The preferences of consumers were measured by statistical analysis of the scores obtained from the response of organoleptic taste panel. The sample containing 1.84% ginger powder was considered the best in overall acceptability


Sign in / Sign up

Export Citation Format

Share Document