scholarly journals Shelf Life Prediction of Chocomix Instant Chocolate Beverage Powder Using Accelerated Shelf Life Testing (ASLT) based on Critical Moisture Content Approach

REAKTOR ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 63 ◽  
Author(s):  
Rifa Nurhayati ◽  
Rosi Pratiwi ◽  
Baskara Katri Anandito ◽  
Ervika Rahayu Novita ◽  
Mukhammad Angwar

Chocomix chocolate beverage powder is one of the increased value-added cocoa products by Griya Cokelat Nglanggeran. The aimed of this study to estimate the shelf life using Accelerated Shelf Life Testing (ASLT) based on critical moisture content. Results showed that critical moisture content of Chocomix was 4.01 % (db). Moisture sorption isotherm (MSI) curve of Chocomix at 28oC was type II isothermic sigmoidal with 2 curves at the ranged of water activity between 0.24 and 0.68; and the equation was  y = 86.584X3 – 91.893X2 + 28.818X – 0.470. The calculation showed that estimated shelf life of Chocomix stored in 51.89 µm thick package at 28oC was 16.4 months.Keywords: chocolate powder, critical moisture content, moisture sorption isotherm, shelf life

2019 ◽  
Vol 7 (2) ◽  
pp. 228
Author(s):  
I Putu Mas Pradnyana Wibawa ◽  
Ida Bagus Putu Gunadnya ◽  
I Made Anom Sutrisna Wijaya

Tujuan dari dilakukanya penelitian Ini adalah untuk menduga umur simpan benih padi menggunakan metode ASLT (Accelerrated Shelf Life Testing) dengan pendekatan model kadar air kritis. Adapun benih yang digunakan adalah benih varietas Ciherang dan varietas Inpari 30. Kemasan dari benih padi adalah plastic jenis Polipropilen (PP). Benih padi disimpan pada kondisi lingkungan (suhu 290C dan RH 75%). Pengamatan benih dianggap kritis ketika persentase daya berkecambah di bawah 80%. Ditemukan dari hasil pengukuran bahwa nilai permeabilitas kemasan (k/x) dari plastic PP adalah 0,013 gH2O/m2.day.mmHg. Pengamtan kadar air awal (Ma) adalah 13 %, kadar air kritis (Mc) adalah 29 %, total padatanya (WS) adalah 8,8 kg, dan perbedaan tekanan (?P) 1,15 mmHg. Sementara Inpari 30 memiliki nilai kadar air awal (Ma) 14%, kadar air kritis 29%, total padatannya (WS) 8,7 kg, dan ?P 0,9 mmHg.  Dari nilai tersebut dapat diduga umur simpan dua varietas benih bersertifikat yang dikemas dalam plastik PP dan disimpan pada suhu 29oC dan RH 75% adalah 156 hari (5,03 bulan) untuk varietas Ciherang dan 254 hari (8,19 bulan)  untuk 30 varietas Inpari.   The purpose of this study was to prediction the shelf life of certified rice seeds using the ASLT (Accelerated Shelf Life Testing) method based on the critical moisture content approach. The varieties of rice seeds used in this research were Ciherang and Inpari 30 varieties which packed with polypropylene (PP) plastic packaging. The rice seeds packages were stored at environmental condition (temperature of 29oC and RH of 75%). Observation on seeds germination was done daily until the seeds have a germination percentage below 80%. When the seeds under this condition, moisture content of the seeds was measured and refer as critical moisture content. It was found that the packaging permeability (k/x) of PP plastic was 0.013 g H2O/m2.day.mmHg. Observation on rice seed of Ciherang variety revealed that its values of initial moisture content (Ma) was 0.133 %, its critical moisture content (Mc) was 0.291 %, its total solid (Ws) was 8.8 kg, and pressure difference  (?P) was 1,15 mmHg. While, for Invary 30 variety the values of its shelf life parameters were as follows: Ma 0.144 %, Mc 0.293 %, Ws 8.7 kg, and ?P 0.9 mmHg. The prediction of shelf life the two certified rice seeds which were packed in PP plastic and stored at 29oC and RH of 75% were 156 days (5.03 months) for Ciherang variety and 254 days (8.19 months). ) for Inpari 30 variety.


2020 ◽  
Vol 14 (02) ◽  
pp. 189
Author(s):  
Vivi Nuraini ◽  
Yannie Asrie Widanti

The expired date is important information that consumers should know. However, many traditional foods have not written an expiration due date. The purpose of this study was to estimate the shelf life of two (2) types of traditional rice-based foods intip and kembang goyang. Estimation of shelf life was carried out using the Accelerated Shelf-life Testing (ASLT) method using the Arrhenius approach and the critical moisture content approach. The calculation of shelf life in the Arrhenius approach to kembang goyang has been obtained respectively 0.45 months, 0.50 months, and 0.47 months at respective temperatures (25oC, 35oC and 45oC). The results of shelf life kembang goyang through the water content approach obtained 0.43 months at 75% RH. The results of the arrhenius approach to intip showed that shelf life of 0.37 months, 0.45 months, and 0.53 months at each temperature (25oC, 35oC, and 45oC). The critical water content approach for intip has obtained a shelf life of 0.58 months (RH 75%). Intip has a slightly larger shelf life when analyzed using the critical moisture content method. Keywords: ASLT, intip, kembang goyang, shelf life


Author(s):  
Ulya Sarofa ◽  
Riski Ayu Anggreini

 The objectives of this research were to produce crackers based on sorghum modified flour and to predict its shelf life using a critical moisture approach. The research was conducted in two stages. The first stage was to determine the best crackers of nine formulations. The second stage was to predict the shelf life of the best crackers formulation by using a critical moisture content approach. The best crackers were produced from a mixture of 50% sorghum modified flour, 50% wheat flour and 25% margarine. The products had a puffing ratio of 38,04 %, and hardness of 28.86 N. The moisture sorption isotherm curve of sorghum modified flour crackers could be described using a Hasley model. Using the critical moisture approach, sorghum modified flour crackers packaged in a metalized plastic and stored at 30°C and stored at 84% relative humidity, the product shelf life would be 207 days.


2020 ◽  
Vol 8 (1) ◽  
pp. 23-28
Author(s):  
Riska Juliana ◽  
Rokhani Hasbullah ◽  
Sutrisno Suro Mardjan

Abstract In the processing, the red ginger powder was dried at 50°C. Red ginger powder is hygroscopic, so it is easy to absorb moisture. This research aims to determine (i) the isothermic absorption curve model in red ginger powder with different fineness modulus and (ii) the expiration date using the critical moisture content method in various types of packaging materials. Moisture sorption isotherm of red ginger powder was determined by the static gravimetric method at 300C. The relationship equilibrium moisture content between relative humidity (RH) is described by the Hasley, Chen-Clayton, Henderson, Caurie, and Oswin Models. The Estimated shelf life is determined using the ASLT (accelerated shelf-life testing) method and calculated using the Labuza model with a critical water content approach. The results obtained that moisture sorption isotherm red ginger powder has sigmoid shape a type II. Henderson is the model that illustrates the accuracy of the ISA curve of red ginger powder of 60 mesh particle size while the Chen-Clayton Model illustrates the accuracy of the ISA curve of red ginger powder of particle size of 80 mesh. The shelf life of red ginger powder is 60 mesh particle size and using HDPE, PP, and aluminum foil packaging which is stored at 75% RH and 300C temperature is 118.85 days, 467.63, and 609.26 days, respectively. The shelf life of red ginger powder 80 particle size is 148.17 days, 582.98 days and 759.54 days.  


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Indira Dey Paul ◽  
Madhusweta Das

The present work aimed to: i) find the suitable proportion, based on sensory evaluation, of microwave-convective hot air dried jamun (Syzygium cumini L.) pulp and seed kernel powder to be mixed for the preparation of jamun powder (JP); ii) generate and model the moisture sorption isotherm (MSI) of JP; and iii) estimate net isosteric heat of sorption (qst), spreading pressure (φ), net integral enthalpy (Qin), and net integral entropy (Sin). To formulate JP, the proportion (w/w, db) comprising 2% kernel and 98% pulp powder was the most desirable. The Peleg model was the best fit to MSI of JP. The qst decreased following linear relationship from 11.02 kJ. mol-1 at 5% equilibrium moisture content (EMC) to 0.27 kJ. mol-1 at 30% EMC. The φ increased with increase in water activity and decreased with increase in temperature from 25 ºC to 35 ºC, and the values of φ at 45 ºC were even higher than at 25 ºC. Net integral enthalpy (Qin) initially decreased till 6% moisture content in JP and displayed an increasing trend with further increase in moisture content. On the contrary, Sin, kept on decreasing continually with increasing moisture content. The moisture zone of 7-11% was considered safe for storage for storage of JP within the temperature range of 45-25 ºC.


2017 ◽  
Vol 13 (1) ◽  
pp. 29 ◽  
Author(s):  
Mutiara Nur Alfiah ◽  
Sri Hartini ◽  
Margareta Novian Cahyanti

<p>This research aims to determine moisture sorption isotherm curves, moisture sorption isotherm models and thermodynamic properties of fermented cassava flour by red yeast rice. The moisture sorption isotherm model used are Guggenheim Anderson deBoer (GAB), Brunauer Emmet Teller (BET) and Caurie. Meanwhile, the test of modelling accuray by Mean Relative Deviation (MRD) and Root Mean Square Error (RMSE). The thermodynamic properties, i.e., enthalpy and entropy were calculated by Clausius - Clapeyron equation. The result shows that the moisture sorption isotherm curve on fermented cassava flour in a sigmoid form (type II). The GAB model is the best model for moisture sorption isotherm of fermented cassava flour by red yeast rice. The MRD and RMSE values at 30˚C, 35˚C and 40˚C are 3.12%, 2.71%, 3.81%, and 1.01, 0.35, 0.42, respectively. The monolayer moisture content at 30˚C, 35˚C and 40˚C are 6.61%, 6.27% and 6.91%, based on GAB model. Meanwhile, when the BET model was used, the monolayer moisture content are 4.92%, 4.86% and 5.19%, while by Caurie model are 6.37%, 6.18% and 5.30%, at 30˚C, 35˚C and 40˚C, respectively. The enthalpy and entropy of water sorption process were decreased when moisture content increased.</p>


Author(s):  
J Roy ◽  
MA Alim ◽  
MN Islam

The study was carried out for the purpose of determining the drying kinetics as well as moisture sorption isotherm of hybrid-81 corn. Corn at about 31% moisture content (wb) was dried in a forced convective hot air cabinet dryer at different drying conditions, such as variable air dry bulb temperature (40°C, 50°C and 60°C) and loading density (3.56 kg/m2, 7.12 kg/m2, and 10.68 kg/m2) as well as in shining sun at different layers (3.56 kg/m2, 7.12 kg/m2, and 10.68 kg/m2). The water sorption isotherm of the dried corn was developed using vacuum desiccators, which contained saturated salt solutions in the range of 11-93% RHs. The mono-layer moisture content calculated by the Brunauer–Emmett–Teller (BET) model (6.76 g/100 g solid) was lesser than that calculated by the Guggenheim–Anderson–De Boer (GAB) model (10.53 g/100 g solid). The energy constants were 10.45 and 4.64 as per BET and GAB equation, respectively. Both models gave suitable fits for corn. The activation energy (Ea) for diffusion of water was found to be 11.09 kcal/gm-mole for corn. Furthermore, it was noticed that, with the increase of corn layer, the drying rate decreased in case of both sun and mechanical drying. However, higher loading density resulted in efficient drying, at least up to 10.7 kg/m2. It was shown that the drying time to obtain stability was the lowest for moisture content (12.08 %) corresponding to aw of 0.65 in case of BET or GAB monolayer moisture content. This finding could be helpful in predicting the storage life of corn.J. Bangladesh Agril. Univ. 15(2): 309-317, December 2017


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 323
Author(s):  
Claire Remington ◽  
Catherine Bourgault ◽  
Caetano C. Dorea

The drying (or dewatering) of fresh feces and fecal sludge is a productive step in the management of sanitation, waste treatment, and resource recovery services. An improved understanding of fresh feces and fecal sludge drying would contribute to the development and deployment of fecal sludge management services. However, there is a lack of available literature on the fundamental drying characteristics of fresh feces. In response to this gap, this work shares experimental results for equilibrium moisture content of fresh feces at different water activity levels (aw) and proposes the use of the Guggenheim, Anderson, and de Boer (GAB) model for predicting aw, calculating the heat of sorption, and estimating the corresponding energy requirements for drying of fresh feces. This is the first time this work has been done with fresh feces. The total heat of evaporation was significant up to a moisture content of about 0.2 kg water per kg dry solids. In addition to informing drying process design, the sorption isotherm can be used to predict microbial activity, which could improve the management of feces and fecal sludge from a public health perspective. These data in turn will be used to promote access to dignified, safe, and sustainable sanitation.


Sign in / Sign up

Export Citation Format

Share Document