Numerical simulation of fluid flow in fractured poroelastic medium integrating dual porosity - Dual permeability and discrete fractures models

2020 ◽  
Author(s):  
D. Yu. Legostaev ◽  
S. P. Rodionov
2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Monia Makhoul ◽  
Philippe Beltrame

AbstractThis paper analyzes the possibility of obtaining the selective transport of microparticles suspended in air in a microgravity environment through modulated channels without net displacement of air. Using numerical simulation and bifurcation analysis tools, we show the existence of intermittent particle drift under the Stokes assumption of the fluid flow. The particle transport can be selective and the direction of transport is controlled only by the kind of pumping used. The selective transport is interpreted as a deterministic ratchet effect due to spatial variations in the flow and the particle drag. This ratchet phenomenon could be applied to the selective transport of metal particles during the short duration of microgravity experiments.


2021 ◽  
Vol 90 ◽  
pp. 108833
Author(s):  
Adam Kraus ◽  
Elia Merzari ◽  
Thomas Norddine ◽  
Oana Marin ◽  
Sofiane Benhamadouche

2011 ◽  
Vol 19 (03) ◽  
pp. 177-183 ◽  
Author(s):  
JIN-BO CHEN ◽  
QING-GANG QIU

The technique of horizontal-tube falling film has been used in the cooling and heating industries such as refrigeration systems, heating systems and ocean thermal energy conversion systems. The comprehensive performance of evaporator is directly affected by the film distribution characteristics outside tubes. In this paper, numerical investigation was performed to predict the film characteristics outside the tubes in horizontal-tube falling film evaporator. The effects of liquid flow rate, tube diameter and the circular degree of tube on the film thickness were presented. The numerical simulation results were compared with that of the empirical equations for calculating the falling film thickness, and agreements between them were reasonable. Numerical simulation results show that, at the fixed fluid flow density, the liquid film is thicker on the upper and lower tube and the thinnest liquid film appears at angle of about 120°. The results also indicate that, when the fluid flow density decreases to a certain value, the local dryout spot on the surface of the tube would occur. In addition, the film thickness decreases with the increases of the tube diameter at the fixed fluid flow density.


Sign in / Sign up

Export Citation Format

Share Document