scholarly journals Techno-economic analysis of a solar hybrid combined cycle power plant integrated with a packed bed storage at gas turbine exhaust

2020 ◽  
Author(s):  
Silvia Trevisan ◽  
Rosa P. Merchán ◽  
Rafael Guédez ◽  
María J. Santos ◽  
Alejandro Medina ◽  
...  
Author(s):  
Wancai Liu ◽  
Hui Zhang

Gas turbine is widely applied in power-generation field, especially combined gas-steam cycle. In this paper, the new scheme of steam turbine driving compressor is investigated aiming at the gas-steam combined cycle power plant. Under calculating the thermodynamic process, the new scheme is compared with the scheme of conventional gas-steam combined cycle, pointing its main merits and shortcomings. At the same time, two improved schemes of steam turbine driving compressor are discussed.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Martín Salazar Pereyra ◽  
Helen Denise Lugo Méndez ◽  
Miguel Toledo Velázquez ◽  
...  

In this paper is carried out a comparison between a gas turbine power plant and a combined cycle power plant through exergetic and environmental indices in order to determine performance and sustainability aspects of a gas turbine and combined cycle plant. First of all, an exergetic analysis of the gas turbine and the combined is carried out then the exergetic and environmental indices are calculated for the gas turbine (case A) and the combined cycle (case B). The exergetic indices are exergetic efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy ratio, environmental effect factor and exergetic sustainability. Besides, the environmental indices are global warming, smog formation and acid rain indices. In the case A, the two gas turbines generate 278.4 MW; whereas 415.19 MW of electricity power is generated by the combined cycle (case B). The results show that exergetic sustainability index for cases A and B are 0.02888 and 0.1058 respectively. The steam turbine cycle improves the overall efficiency, as well as, the reviewed exergetic indexes. Besides, the environmental indices of the gas turbines (case A) are lower than the combined cycle environmental indices (case B), since the combustion gases are only generated in the combustion chamber.


2010 ◽  
Vol 132 (12) ◽  
pp. 57-57
Author(s):  
Lee S. Langston

This article presents an overview of gas turbine combined cycle (CCGT) power plants. Modern CCGT power plants are producing electric power as high as half a gigawatt with thermal efficiencies approaching the 60% mark. In a CCGT power plant, the gas turbine is the key player, driving an electrical generator. Heat from the hot gas turbine exhaust is recovered in a heat recovery steam generator, to generate steam, which drives a steam turbine to generate more electrical power. Thus, it is a combined power plant burning one unit of fuel to supply two sources of electrical power. Most of these CCGT plants burn natural gas, which has the lowest carbon content of any other hydrocarbon fuel. Their near 60% thermal efficiencies lower fuel costs by almost half compared to other gas-fired power plants. Their installed capital cost is the lowest in the electric power industry. Moreover, environmental permits, necessary for new plant construction, are much easier to obtain for CCGT power plants.


Sign in / Sign up

Export Citation Format

Share Document