scholarly journals Correlation between Raman spectra and color of tungsten trioxide (WO3) thermally evaporated from a tungsten filament

AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055103
Author(s):  
Germán Escalante ◽  
Roberto López ◽  
Francisco Noé Demesa ◽  
Gerardo Villa-Sánchez ◽  
Víctor Hugo Castrejón-Sánchez ◽  
...  
2010 ◽  
Vol 148-149 ◽  
pp. 1042-1046
Author(s):  
Jin Yang Lin ◽  
Yong Ai Zhang ◽  
Ling Jie Wang ◽  
Tai Liang Guo

Novel tungsten oxide sensors were fabricated based on Hall Effect and their NO2 gas sensing properties were examined. Tungsten trioxide was grown by vapor evaporation of metal tungsten filament in an oxygen atmosphere. A WO3 thick film was deposited on the four Au electrode to be a WO3 sensor. The sensor was tested between magnetic field in a plastic test chamber. The gas sensing experiment revealed that at the NO2 concentration of 40 ppm, a sensitivity of 3.27, a response time of 36 s, and a recovery time of 45 s were observed at room-temperature. The effect of WO3 based on Hall Effect on the sensing characteristic is discussed.


Author(s):  
George Christov ◽  
Bolivar J. Lloyd

A new high intensity grid cap has been designed for the RCA-EMU-3 electron microscope. Various parameters of the new grid cap were investigated to determine its characteristics. The increase in illumination produced provides ease of focusing on the fluorescent screen at magnifications from 1500 to 50,000 times using an accelerating voltage of 50 KV.The EMU-3 type electron gun assembly consists of a V-shaped tungsten filament for a cathode with a thin metal threaded cathode shield and an anode with a central aperture to permit the beam to course the length of the column. The cathode shield is negatively biased at a potential of several hundred volts with respect to the filament. The electron beam is formed by electrons emitted from the tip of the filament which pass through an aperture of 0.1 inch diameter in the cap and then it is accelerated by the negative high voltage through a 0.625 inch diameter aperture in the anode which is at ground potential.


1982 ◽  
Vol 85 (1) ◽  
pp. 297-303 ◽  
Author(s):  
A. D. Bandrauk ◽  
K. D. Truong ◽  
S. Jandl

2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


Sign in / Sign up

Export Citation Format

Share Document