scholarly journals LayerPCM: An implicit scheme for dielectric screening from layered substrates

2021 ◽  
Vol 154 (22) ◽  
pp. 224114
Author(s):  
Jannis Krumland ◽  
Gabriel Gil ◽  
Stefano Corni ◽  
Caterina Cocchi
2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rui Su ◽  
Zhaojian Xu ◽  
Jiang Wu ◽  
Deying Luo ◽  
Qin Hu ◽  
...  

AbstractThe performance of perovskite photovoltaics is fundamentally impeded by the presence of undesirable defects that contribute to non-radiative losses within the devices. Although mitigating these losses has been extensively reported by numerous passivation strategies, a detailed understanding of loss origins within the devices remains elusive. Here, we demonstrate that the defect capturing probability estimated by the capture cross-section is decreased by varying the dielectric response, producing the dielectric screening effect in the perovskite. The resulting perovskites also show reduced surface recombination and a weaker electron-phonon coupling. All of these boost the power conversion efficiency to 22.3% for an inverted perovskite photovoltaic device with a high open-circuit voltage of 1.25 V and a low voltage deficit of 0.37 V (a bandgap ~1.62 eV). Our results provide not only an in-depth understanding of the carrier capture processes in perovskites, but also a promising pathway for realizing highly efficient devices via dielectric regulation.


2021 ◽  
Vol 11 (12) ◽  
pp. 5509
Author(s):  
Hongjin Choi ◽  
Seonghwan Choi ◽  
Soo-Chang Kang ◽  
Myoung-Gyu Lee

A fully implicit stress integration algorithm is developed for the distortional hardening model, namely the e−HAH model, capable of simulating cross−hardening/softening under orthogonal loading path changes. The implicit algorithm solves a complete set of residuals as nonlinear functions of stress, a microstructure deviator, and plastic state variables of the constitutive model, and provides a consistent tangent modulus. The number of residuals is set to be 20 or 14 for the continuum or shell elements, respectively. Comprehensive comparison programs are presented regarding the predictive accuracy and stability with different numerical algorithms, strain increments, material properties, and loading conditions. The flow stress and r−value evolutions under reverse/cross−loading conditions prove that the algorithm is robust and accurate, even with large strain increments. By contrast, the cutting−plane method and partially implicit Euler backward method, which are characterized by a reduced number of residuals, result in unstable responses under abrupt loading path changes. Finally, the algorithm is implemented into the finite element modeling of large−size, S−rail forming and the springback for two automotive steel sheets, which is often solved by a hybrid dynamic explicit–implicit scheme. The fully implicit algorithm performs well for the whole simulation with the solely static implicit scheme.


ACS Nano ◽  
2021 ◽  
Author(s):  
Soohyung Park ◽  
Thorsten Schultz ◽  
Dongguen Shin ◽  
Niklas Mutz ◽  
Areej Aljarb ◽  
...  

2012 ◽  
Vol 33 (8) ◽  
pp. 1195-1197 ◽  
Author(s):  
Kevin Brenner ◽  
T. J. Beck ◽  
James D. Meindl

2018 ◽  
Vol 45 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Hriday Mani Kalita ◽  
Arup Kumar Sarma

Sign in / Sign up

Export Citation Format

Share Document