Electrical modeling of nerve fibers infected by multiple sclerosis disease

2022 ◽  
Author(s):  
Hussain K. Chaiel ◽  
Ahmed A. Alabdel Abass
2021 ◽  
Vol 8 (4) ◽  
pp. 800-810
Author(s):  
Yuri Ahuja ◽  
Nicole Kim ◽  
Liang Liang ◽  
Tianrun Cai ◽  
Kumar Dahal ◽  
...  

2010 ◽  
Vol 81 (11) ◽  
pp. e27-e27
Author(s):  
T. Mihalova ◽  
M. Ban ◽  
A. Baker ◽  
R. Abraham ◽  
R. Strange ◽  
...  

2009 ◽  
Vol 41 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Jennifer E. Thannhauser ◽  
Jean K. Mah ◽  
Luanne M. Metz

2021 ◽  
Vol 27 ◽  
Author(s):  
Jennifer Cadenas-Fernández ◽  
Pablo Ahumada-Pascual ◽  
Luis Sanz Andreu ◽  
Ana Velasco

: Mammalian nervous systems depend crucially on myelin sheaths covering the axons. In the central nervous system, myelin sheaths consist of lipid structures which are generated from the membrane of oligodendrocytes (OL). These sheaths allow fast nerve transmission, protect axons and provide them metabolic support. In response to specific traumas or pathologies, these lipid structures can be destabilized and generate demyelinating lesions. Multiple sclerosis (MS) is an example of a demyelinating disease in which the myelin sheaths surrounding the nerve fibers of the brain and spinal cord are damaged. MS is the leading cause of neurological disability in young adults in many countries, and its incidence has been increasing in recent decades. Related to its etiology, it is known that MS is an autoimmune and inflammatory CNS disease. However, there are no effective treatments for this disease and the immunomodulatory therapies that currently exist have proven limited success since they only delay the progress of the disease. Nowadays, one of the main goals in the MS research is to find treatments which allows the recovery of neurological disabilities due to demyelination. To this end, different approaches, such as modulating intracellular signaling or regulating the lipid metabolism of OLs, are being considered. Here, in addition to immunosuppressive or immunomodulatory drugs that reduce the immune response against myelin sheaths, we review a diverse group of drugs that promotes endogenous remyelination in MS patients and whose use may be interesting as potential therapeutic agents in MS disease. To this end, we compile specific treatments against MS that are currently in the market with remyelination strategies which have entered into human clinical trials for future reparative MS therapies. The method used in this study is a systematic literature review on PubMed, Web of Science and Science Direct databases up to May 31, 2020. To narrow down the search results in databases, more specific keywords, such as, “myelin sheath”, “remyelination”, “demyelination”, “oligodendrocyte” and “lipid synthesis” were used to focus the search. We favoured papers published after January, 2015, but did not exclude earlier seminal papers.


2017 ◽  
Vol 9 (17) ◽  
pp. 2029-2051 ◽  
Author(s):  
Simona Collina ◽  
Marta Rui ◽  
Silvia Stotani ◽  
Emanuele Bignardi ◽  
Daniela Rossi ◽  
...  

2017 ◽  
Vol 24 (4) ◽  
pp. 472-480 ◽  
Author(s):  
Cyra E Leurs ◽  
Petar Podlesniy ◽  
Ramon Trullas ◽  
Lisanne Balk ◽  
Martijn D Steenwijk ◽  
...  

Background: Mitochondrial dysfunction is increasingly recognized as an important feature of multiple sclerosis (MS) pathology and may be relevant for clinical disease progression. However, it is unknown whether mitochondrial DNA (mtDNA) levels in the cerebrospinal fluid (CSF) associate with disease progression and therapeutic response. Objectives: To evaluate whether CSF concentrations of mtDNA in MS patients can serve as a marker of ongoing neuropathology and may be helpful to differentiate between MS disease subtypes. To explore the effect of disease-modifying therapies on mtDNA levels in the CSF. Methods: CSF mtDNA was measured using a digital polymerase chain reaction (PCR) CSF mtDNA in two independent MS cohorts. The cohorts included 92 relapsing-remitting multiple sclerosis (RRMS) patients, 40 progressive multiple sclerosis (PMS) patients (27 secondary progressive and 13 primary progressive), 50 various neurologic disease controls, and 5 healthy controls. Results: Patients with PMS showed a significant increase in CSF mtDNA compared to non-inflammatory neurologic disease controls. Patients with higher T2 lesion volumes and lower normalized brain volumes showed increased concentration of mtDNA. Patients treated with fingolimod had significantly lower mtDNA copy levels at follow-up compared to baseline. Conclusion: Our results showed a non-specific elevation of concentration of mtDNA in PMS patients. mtDNA concentrations respond to fingolimod and may be used to monitor biological effect of this treatment.


2021 ◽  
Author(s):  
Asma Hassani ◽  
Narendran Reguraman ◽  
Safa Shehab ◽  
Gulfaraz Khan

Abstract Background: Epstein-Barr virus (EBV) is a common herpesvirus associated with malignant and non-malignant conditions. An accumulating body of evidence supports a role for EBV in the pathogenesis of multiple sclerosis (MS), a demyelinative disease of the CNS. However, little is known about the details of the link between EBV and MS. One obstacle which has hindered research in this area has been the lack of a suitable animal model recapitulating natural infection in humans. We have recently shown that healthy rabbits are susceptible to EBV infection, and viral persistence in these animals mimics latent infection in humans. Methods: We used the rabbit model to investigate if peripheral EBV infection can lead to infection of the CNS and its potential consequences. We injected EBV intravenously in one group of animals, and PBS in another, with and without immunosuppression. Histopathological changes and viral dynamics were examined in peripheral blood, spleen, brain, and spinal cord, using a range of molecular and histopathology techniques. Results: Our investigations uncovered important findings that could not be previously addressed. We showed that primary peripheral EBV infection can lead to the virus traversing the CNS. Cell associated, but not free virus in the plasma, correlated with CNS infection. The infected cells within the brain were found to be B-lymphocytes. Most notably, animals injected with EBV, but not PBS, developed inflammatory cellular aggregates in the CNS. The incidence of these aggregates increased in the immunosuppressed animals. The cellular aggregates contained compact clusters of macrophages surrounded by reactive astrocytes and dispersed B and T lymphocytes, but not myelinated nerve fibers. Moreover, studying EBV infection over a span of 28 days, revealed that the peak point for viral load in the periphery and CNS coincides with increased occurrence of cellular aggregates in the brain. Finally, peripheral EBV infection triggered temporal changes in the expression of latent viral transcripts and cytokines in the brain. Conclusion: The present study provides the first direct in vivo evidence for the role of peripheral EBV infection in CNS pathology, and highlights a unique model to dissect viral mechanisms contributing to the development of MS.


Sign in / Sign up

Export Citation Format

Share Document