Convergent Richtmyer–Meshkov instability on a light gas layer with perturbed inner and outer surfaces

2021 ◽  
Vol 33 (10) ◽  
pp. 102112
Author(s):  
Juchun Ding ◽  
Xiaoming Deng ◽  
Xisheng Luo
Keyword(s):  
Author(s):  
K. Fukushima ◽  
N. Kohyama ◽  
A. Fukami

A film-sealed high resolution environmental cell(E.C) for observing hydrated materials had been developed by us(l). Main specification of the E.C. is as follows: 1) Accelerated voltage; 100 kV. 2) Gas in the E.C.; saturated water vapour with carrier gas of 50 Torr. 3) Thickness of gas layer; 50 μm. 4) Sealing film; evaporated carbon film(20 nm thick) with plastic microgrid. 5) Resolving power; 1 nm. 6) Transmittance of electron beam; 60% at 100 kV. The E.C. had been successfully applied to the study of hydrated halloysite(2) (3). Kaolin minerals have no interlayer water and are basically non-expandable but form intercalation compounds with some specific chemicals such as hydrazine, formamide and etc. Because of these compounds being mostly changed in vacuum, we tried to reveal the structure changes between in wet air and in vacuum of kaolin minerals intercalated with hydrazine and of hydrated state of montmori1lonite using the E.C. developed by us.


2008 ◽  
Vol 6 ◽  
pp. 132-136
Author(s):  
O.R. Nurislamov

The paper deals with the problem of wall boundary flow with the formation of a thin vapor-gas layer near its surface. The possibility of reducing the resistance to liquid motion by means of the injection of a hot vapor-gas mixture from its surface is investigated.


2015 ◽  
Vol 24 (4) ◽  
pp. 335-337 ◽  
Author(s):  
V. E. Nakoryakov ◽  
I. V. Mezentsev ◽  
A. V. Meleshkin ◽  
D. S. Elistratov ◽  
A. Yu. Manakov

2020 ◽  
Vol 5 (2) ◽  
pp. 1-7
Author(s):  
Ryan Anugrah Putra ◽  
Akhlisa Nadiantya Aji Nugroho

The gas-liquid flow inside a horizontal static mixer was numerically investigated by using Euler-Euler Computational Fluid Dynamics (CFD) simulations. The results confirm that the liquid superficial velocity plays a significant role on the mixing behavior of the gas and liquid. The mixing behavior in this present study at a liquid superficial velocity of 0.2 m/s was the worst both axially and radially. Increasing the liquid superficial velocity significantly improve the mixing between gas and liquid. However, the unwanted gas layer still can be found at the superficial liquid velocity less than 0.8 m/s. A good mixing behavior in this study was achieved at a relatively high velocity (i.e. larger than 0.8 m/s).


Author(s):  
Jan Breitenbach ◽  
Louis Maximilian Reitter ◽  
Muyuan Liu ◽  
Kuan-Ling Huang ◽  
Dieter Bothe ◽  
...  

Spray systems often operate under extreme ambient conditions like high pressure, which can have a significant influence on important spray phenomena. One of these phenomena is binary drop collisions. Such collisions, depending on the relative velocity and the impact parameter (eccentricity of the collision), can lead to drop bouncing, coalescence or breakup. This experimental and computational study is focused on the description of the phenomenon of drop bouncing, which is caused by a thin gas layer preventing the drops coalescence. To identify the main influencing parameters of this phenomenon, experiments on binary drop collisions are performed in a pressure chamber. This experimental system allows us to investigate the effect of an ambient pressure (namely the density and viscosity of the surrounding gas) on the bouncing/coalescence threshold.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4758


Author(s):  
Neal P. Bitter ◽  
Joseph E. Shepherd

Detonations and deflagration-to-detonation transition (DDT) are experimentally studied in horizontal pipes which are partially filled with water. The gas layer above the water is stoichiometric hydrogen-oxygen at 1 bar. For detonation cases, ignition and transition occur outside of the water-filled section. For DDT cases, ignition and transition occur over the surface of the water. Pressure and hoop strain are measured incrementally along the pipe, with pressure transducers located both above and below the water. The detonation wave produces an oblique shock train in the water, and the curvature of the pipe is seen to focus the shocks at the bottom, resulting in peak pressures that are 4–6 times higher than the peak detonation pressure. Such pressure amplification is observed for water depths of 0.25, 0.5, 0.75, 0.87, and 0.92 pipe diameters. For a water depth of 0.5 diameters, pressure is also recorded at several circumferential locations in order to measure the shock focusing phenomenon. Peak hoop strains are found to decrease with increasing water depth, and transition to detonation is seen to occur for water depths as high as 0.92 pipe diameters.


2021 ◽  
pp. 13-20
Author(s):  

The prospects of using the gas-static suspension of the internal combustion engine piston in transport vehicles and power plants are considered. The diagram of the piston and the method for calculating the stiffness and bearing capacity of the gas layer surrounding the piston are presented, as well as the results of experiments that showed the relevance of this method. The possibility of gas and static centering of the engine piston is confirmed. Keywords: internal combustion engine, piston, gasstatic suspension, stiffness, bearing capacity, gas medium. [email protected]


Sign in / Sign up

Export Citation Format

Share Document