On the class of software system’s verification tests for solving stationary problems of linear elasticity

2021 ◽  
Author(s):  
I. V. Kireev
Author(s):  
Tim Oliver ◽  
Akira Ishihara ◽  
Ken Jacobsen ◽  
Micah Dembo

In order to better understand the distribution of cell traction forces generated by rapidly locomoting cells, we have applied a mathematical analysis to our modified silicone rubber traction assay, based on the plane stress Green’s function of linear elasticity. To achieve this, we made crosslinked silicone rubber films into which we incorporated many more latex beads than previously possible (Figs. 1 and 6), using a modified airbrush. These films could be deformed by fish keratocytes, were virtually drift-free, and showed better than a 90% elastic recovery to micromanipulation (data not shown). Video images of cells locomoting on these films were recorded. From a pair of images representing the undisturbed and stressed states of the film, we recorded the cell’s outline and the associated displacements of bead centroids using Image-1 (Fig. 1). Next, using our own software, a mesh of quadrilaterals was plotted (Fig. 2) to represent the cell outline and to superimpose on the outline a traction density distribution. The net displacement of each bead in the film was calculated from centroid data and displayed with the mesh outline (Fig. 3).


2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


2021 ◽  
Vol 86 (3) ◽  
Author(s):  
Guosheng Fu ◽  
Christoph Lehrenfeld ◽  
Alexander Linke ◽  
Timo Streckenbach
Keyword(s):  

Author(s):  
Patrícia Tonon ◽  
Rodolfo André Kuche Sanches ◽  
Kenji Takizawa ◽  
Tayfun E. Tezduyar

AbstractGood mesh moving methods are always part of what makes moving-mesh methods good in computation of flow problems with moving boundaries and interfaces, including fluid–structure interaction. Moving-mesh methods, such as the space–time (ST) and arbitrary Lagrangian–Eulerian (ALE) methods, enable mesh-resolution control near solid surfaces and thus high-resolution representation of the boundary layers. Mesh moving based on linear elasticity and mesh-Jacobian-based stiffening (MJBS) has been in use with the ST and ALE methods since 1992. In the MJBS, the objective is to stiffen the smaller elements, which are typically placed near solid surfaces, more than the larger ones, and this is accomplished by altering the way we account for the Jacobian of the transformation from the element domain to the physical domain. In computing the mesh motion between time levels $$t_n$$ t n and $$t_{n+1}$$ t n + 1 with the linear-elasticity equations, the most common option is to compute the displacement from the configuration at $$t_n$$ t n . While this option works well for most problems, because the method is path-dependent, it involves cycle-to-cycle accumulated mesh distortion. The back-cycle-based mesh moving (BCBMM) method, introduced recently with two versions, can remedy that. In the BCBMM, there is no cycle-to-cycle accumulated distortion. In this article, for the first time, we present mesh moving test computations with the BCBMM. We also introduce a version we call “half-cycle-based mesh moving” (HCBMM) method, and that is for computations where the boundary or interface motion in the second half of the cycle consists of just reversing the steps in the first half and we want the mesh to behave the same way. We present detailed 2D and 3D test computations with finite element meshes, using as the test case the mesh motion associated with wing pitching. The computations show that all versions of the BCBMM perform well, with no cycle-to-cycle accumulated distortion, and with the HCBMM, as the wing in the second half of the cycle just reverses its motion steps in the first half, the mesh behaves the same way.


Sign in / Sign up

Export Citation Format

Share Document