On the extension of Bretherton theory for thin liquid films formed around elongated bubbles

2021 ◽  
Vol 33 (12) ◽  
pp. 123303
Author(s):  
Meisam Habibi Matin ◽  
Saeed Moghaddam
Author(s):  
Hongyi Yu ◽  
Karsten Loffler ◽  
Tatiana Gambaryan-Roisman ◽  
Peter Stephan

2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Mariana Rodríguez-Hakim ◽  
Joseph M. Barakat ◽  
Xingyi Shi ◽  
Eric S. G. Shaqfeh ◽  
Gerald G. Fuller

AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045317
Author(s):  
Ali Mohammadtabar ◽  
Hadi Nazaripoor ◽  
Adham Riad ◽  
Arman Hemmati ◽  
Mohtada Sadrzadeh

2017 ◽  
Vol 744 ◽  
pp. 346-349
Author(s):  
Xiu Juan Li ◽  
Rui Song Guo ◽  
Min Zhao

The structure of the thin liquid films determines the stability of foams and emulsions. In this work the bubbles stretched length with different hollow SiO2 particles concentration is measured when the foam has been stilled for different time. The results show that the bubbles stretched length is longer than that of bubbles when the foam is free of hollow SiO2 particles even when the foam has been stilled for 500mins. The bubbles stretched length increases with increasing the concentration of hollow SiO2 particles. A strong hydration effect leaves a large volume of hydration layers on the solid particles surfaces in aqueous solutions. The water in hydration layers can help the film keep a certain thickness. The existence of hydration forces leads that two particles cannot be too close each other. The high concentration surfactant limited in the fixed area helps the film keep good elasticity. Therefore the film has a long life time with compatible thickness and elasticity and the three-phrase foam is upper stable.


Langmuir ◽  
2012 ◽  
Vol 28 (26) ◽  
pp. 9977-9985 ◽  
Author(s):  
Christian W. J. Berendsen ◽  
Jos C. H. Zeegers ◽  
Geerit C. F. L. Kruis ◽  
Michel Riepen ◽  
Anton A. Darhuber

Author(s):  
Shriram Pillapakkam ◽  
N. A. Musunuri ◽  
P. Singh

In this paper, we present a technique for freezing monolayers of micron and sub-micron sized particles onto the surface of a flexible thin film after the self-assembly of a particle monolayer on fluid-liquid interfaces has been improved by the process we have developed where an electric field is applied in the direction normal to the interface. Particles smaller than about 10 microns do not self-assemble under the action of lateral capillary forces alone since capillary forces amongst them are small compared to Brownian forces. We have overcome this problem by applying an electric field in the direction normal to the interface which gives rise to dipoledipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another liquid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.


Author(s):  
Amgad R. Rezk ◽  
Ofer Manor ◽  
Leslie Y. Yeo ◽  
James R. Friend

Arising from an interplay between capillary, acoustic and intermolecular forces, surface acoustic waves (SAWs) are observed to drive a unique and curious double flow reversal in the spreading of thin films. With a thickness at or less than the submicrometre viscous penetration depth, the film is seen to advance along the SAW propagation direction, and self-similarly over time t 1/4 in the inertial limit. At intermediate film thicknesses, beyond one-fourth the sound wavelength λ ℓ in the liquid, the spreading direction reverses, and the film propagates against the direction of the SAW propagation. The film reverses yet again, once its depth is further increased beyond one SAW wavelength. An unstable thickness region, between λ ℓ /8 and λ ℓ /4, exists from which regions of the film either rapidly grow in thickness to exceed λ ℓ /4 and move against the SAW propagation, consistent with the intermediate thickness films, whereas other regions decrease in thickness below λ ℓ /8 to conserve mass and move along the SAW propagation direction, consistent with the thin submicrometre films.


Sign in / Sign up

Export Citation Format

Share Document