Electronic properties and ion migration of “in vacuo” lithiated nanoporous WO3:Mo thin films

2022 ◽  
Vol 131 (1) ◽  
pp. 015301
Author(s):  
Jeremy Fleury ◽  
Luc Burnier ◽  
Andreas Schüler
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1023
Author(s):  
María Elena Sánchez-Vergara ◽  
Leon Hamui ◽  
Elizabeth Gómez ◽  
Guillermo M. Chans ◽  
José Miguel Galván-Hidalgo

The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture “contacts up/base down” were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10−5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10−7 A and a photoconductivity between 4 × 10−9 and 7 × 10−9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies.


2002 ◽  
Vol 420-421 ◽  
pp. 312-317 ◽  
Author(s):  
R Sanjinés ◽  
O Banakh ◽  
C Rojas ◽  
P.E Schmid ◽  
F Lévy

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 251
Author(s):  
Peter Swekis ◽  
Aleksandr S. Sukhanov ◽  
Yi-Cheng Chen ◽  
Andrei Gloskovskii ◽  
Gerhard H. Fecher ◽  
...  

Magnetic Weyl semimetals are newly discovered quantum materials with the potential for use in spintronic applications. Of particular interest is the cubic Heusler compound Co2MnGa due to its inherent magnetic and topological properties. This work presents the structural, magnetic and electronic properties of magnetron co-sputtered Co2MnGa thin films, with thicknesses ranging from 10 to 80 nm. Polarized neutron reflectometry confirmed a uniform magnetization through the films. Hard x-ray photoelectron spectroscopy revealed a high degree of spin polarization and localized (itinerant) character of the Mn d (Co d) valence electrons and accompanying magnetic moments. Further, broadband and field orientation-dependent ferromagnetic resonance measurements indicated a relation between the thickness-dependent structural and magnetic properties. The increase of the tensile strain-induced tetragonal distortion in the thinner films was reflected in an increase of the cubic anisotropy term and a decrease of the perpendicular uniaxial term. The lattice distortion led to a reduction of the Gilbert damping parameter and the thickness-dependent film quality affected the inhomogeneous linewidth broadening. These experimental findings will enrich the understanding of the electronic and magnetic properties of magnetic Weyl semimetal thin films.


2018 ◽  
Vol 255 ◽  
pp. 871-883 ◽  
Author(s):  
P. Velusamy ◽  
R. Ramesh Babu ◽  
K. Ramamurthi ◽  
E. Elangovan ◽  
J. Viegas ◽  
...  

2011 ◽  
Vol 1321 ◽  
Author(s):  
A. Kumar ◽  
P.I. Widenborg ◽  
H. Hidayat ◽  
Qiu Zixuan ◽  
A.G. Aberle

ABSTRACTThe effect of the rapid thermal annealing (RTA) and hydrogenation step on the electronic properties of the n+ and p+ solid phase crystallized (SPC) poly-crystalline silicon (poly-Si) thin films was investigated using Hall effect measurements and four-point-probe measurements. Both the RTA and hydrogenation step were found to affect the electronic properties of doped poly-Si thin films. The RTA step was found to have the largest impact on the dopant activation and majority carrier mobility of the p+ SPC poly-Si thin films. A very high Hall mobility of 71 cm2/Vs for n+ poly-Si and 35 cm2/Vs for p+ poly-Si at the carrier concentration of 2×1019 cm-3 and 4.5×1019 cm-3, respectively, were obtained.


2005 ◽  
Vol 87 (14) ◽  
pp. 142508 ◽  
Author(s):  
Yayoi Takamura ◽  
Jostein K. Grepstad ◽  
Rajesh V. Chopdekar ◽  
Yuri Suzuki ◽  
Ann F. Marshall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document