scholarly journals Anisotropic pyrochemical dry etching of fluorinated ethylene propylene induced by pre-irradiation with synchrotron radiation

AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025104
Author(s):  
Kaito Fujitani ◽  
Masaya Takeuchi ◽  
Yuichi Haruyama ◽  
Akinobu Yamaguchi ◽  
Yuichi Utsumi
Lab on a Chip ◽  
2021 ◽  
Author(s):  
Regan P Moore ◽  
Ellen C O’Shaughnessy ◽  
Yu Shi ◽  
Ana T Nogueira ◽  
Katelyn M Heath ◽  
...  

We present a microfluidic device compatible with high resolution light sheet and super-resolution microscopy. Our device is a 150 μm thick chamber with a transparent fluorinated ethylene propylene (FEP) cover...


2018 ◽  
Vol 43 (48) ◽  
pp. 21918-21927 ◽  
Author(s):  
Moon Hee Lee ◽  
Ho Young Kim ◽  
Seong Moon Oh ◽  
Byung Choon Kim ◽  
Daesuk Bang ◽  
...  

2012 ◽  
Vol 1394 ◽  
Author(s):  
Jesse Huso ◽  
Hui Che ◽  
John L. Morrison ◽  
Dinesh Thapa ◽  
Michelle Huso ◽  
...  

ABSTRACTBandgap engineered ZnSxO1-x films were grown on Fluorinated Ethylene Propylene (FEP) substrates and analyzed using transmission spectroscopy. FEP is considered as a potential substrate for application in flexible electronics and semiconductor films.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2436
Author(s):  
Klára Fajstavrová ◽  
Silvie Rimpelová ◽  
Dominik Fajstavr ◽  
Václav Švorčík ◽  
Petr Slepička

In this study, we present the surface patterning of a biopolymer poly(l-lactide) (PLLA) for fibroblast growth enhancement. The patterning is based on a self-organized pore arrangement directly fabricated from a ternary system of a solvent-nonsolvent biopolymer. We successfully created a porous honeycomb-like pattern (HCP) on a thermally resistant polymer—fluorinated ethylene propylene (FEP). An important preparation step for HCP is activation of the substrate in Ar plasma discharge. The polymer activation leads to changes in the surface chemistry, which corresponds to an increase in the substrate surface wettability. The aim of this study was to evaluate the influence of the PLLA concentration in solution on the surface morphology, roughness, wettability, and chemistry, and subsequently, also on fibroblast proliferation. We confirmed that the amount of PLLA in solution significantly affects the material surface properties. The pore size of the prepared layers, the surface wettability, and the surface oxygen content increased with an increasing amount of biopolymer in the coating solution. The optimal amount was 1 g of PLLA, which resulted in the highest number of cells after 6 days from seeding; however, all three biopolymer concentrations exhibited significantly better results compared to pristine FEP. The cytocompatibility tests showed that the HCP promoted the attachment of cell filopodia to the underlying substrate and, thus, significantly improved the cell–material interactions. We prepared a honeycomb biodegradable support for enhanced cell growth, so the surface properties of perfluoroethylenepropylene were significantly enhanced.


Sign in / Sign up

Export Citation Format

Share Document