Radio emission confirms that a magnetic field spans intergalactic space

Physics Today ◽  
2019 ◽  
Vol 72 (8) ◽  
pp. 17-19
Author(s):  
Alex Lopatka
2021 ◽  
Vol 502 (2) ◽  
pp. 2807-2814
Author(s):  
Martin G H Krause ◽  
Martin J Hardcastle

ABSTRACT The ARCADE 2 balloon bolometer along with a number of other instruments have detected what appears to be a radio synchrotron background at frequencies below about 3 GHz. Neither extragalactic radio sources nor diffuse Galactic emission can currently account for this finding. We use the locally measured cosmic ray electron population, demodulated for effects of the Solar wind, and other observational constraints combined with a turbulent magnetic field model to predict the radio synchrotron emission for the Local Bubble. We find that the spectral index of the modelled radio emission is roughly consistent with the radio background. Our model can approximately reproduce the observed antenna temperatures for a mean magnetic field strength B between 3 and 5 nT. We argue that this would not violate observational constraints from pulsar measurements. However, the curvature in the predicted spectrum would mean that other, so far unknown sources would have to contribute below 100 MHz. Also, the magnetic energy density would then dominate over thermal and cosmic ray electron energy density, likely causing an inverse magnetic cascade with large variations of the radio emission in different sky directions as well as high polarization. We argue that this disagrees with several observations and thus that the magnetic field is probably much lower, quite possibly limited by equipartition with the energy density in relativistic or thermal particles (B = 0.2−0.6 nT). In the latter case, we predict a contribution of the Local Bubble to the unexplained radio background at most at the per cent level.


2021 ◽  
Vol 917 (2) ◽  
pp. L20
Author(s):  
N. V. Pogorelov ◽  
F. Fraternale ◽  
T. K. Kim ◽  
L. F. Burlaga ◽  
D. A. Gurnett

1998 ◽  
Vol 164 ◽  
pp. 165-166
Author(s):  
A. B. Pushkarev ◽  
D. C. Gabuzda

AbstractThe polarization electric vectors in the VLBI jets of BL Lacertae objects are typically aligned with the jet structure. If the jet radio emission is optically thin synchrotron emission, this implies that the magnetic field is perpendicular to the jet, usually interpreted as a signature of shocks. The distribution of polarization position angles in the VLBI core components appears to be bimodal, with the polarization angles either aligned with or perpendicular to the jet direction. In order to study the origin of this characteristic polarization structure, we have made VLBI polarization observations of all 34 sources in the Kühr and Schmidt sample of BL Lacertae objects.


1996 ◽  
Vol 169 ◽  
pp. 615-616
Author(s):  
V.R. Shoutenkov

The possibility to study magnetic field of the Galaxy calculating correlation or structure functions of synchrotron background radio emission have been known long ago (Kaplan and Pikel'ner (1963); Getmantsev (1958)). But this method had not been as popular as other methods of magnetic field studies. However theoretical calculations made by Chibisov and Ptuskin (1981) showed that correlation functions of intensity of synchrotron background radio emission can give a lot of valuable information about galactic magnetic fields because of the intensity of synchrotron background radio emission depends on H⊥. According to this theory correlation C(θ, φ) and structure S(θ, φ) functions of intensity, as functions of angular separation θ between two lines of sight and position angle φ on the sky between this two lines of sight, can be presented as a sum of isotropic (not dependent from angle φ) and anisotropic parts:


2011 ◽  
Vol 741 (1) ◽  
pp. 27 ◽  
Author(s):  
M. McLean ◽  
E. Berger ◽  
J. Irwin ◽  
J. Forbrich ◽  
A. Reiners

1998 ◽  
Vol 164 ◽  
pp. 115-116 ◽  
Author(s):  
A. Alberdi ◽  
L. Lara ◽  
J.L. Gómez ◽  
J.M. Marcaide ◽  
M.A. Pérez-Torres ◽  
...  

AbstractWe have performed simultaneous multi-frequency polarization VLBA observations of the compact radio sources 3C 395 and 4C 39.25 which show both stationary and superluminal components in their parsec-scale structures. Those of 3C 395 have been reported elsewhere. Here we report on high resolution maps of the total intensity and polarized radio emission of 4C 39.25, trace the magnetic field configuration along the jet, and explore different possibilities for the nature of the components within the framework of the bent shocked relativistic jet model.


2000 ◽  
Vol 177 ◽  
pp. 265-266
Author(s):  
D. Mitra ◽  
S. Konar ◽  
D. Bhattacharya ◽  
A. V. Hoensbroech ◽  
J. H. Seiradakis ◽  
...  

AbstractThe evolution of the multipolar structure of the magnetic field of isolated neutron stars is studied assuming the currents to be confined to the crust. Lower orders (≤ 25) of multipole are seen to evolve in a manner similar to the dipole suggesting little or no evolution of the expected pulse shape. We also study the multifrequency polarization position angle traverse of PSR B0329+54 and find a significant frequency dependence above 2.7 GHz. We interpret this as an evidence of strong multipolar magnetic field present in the radio emission region.


1981 ◽  
Vol 4 (2) ◽  
pp. 221-226 ◽  
Author(s):  
R. G. Hewitt ◽  
D. B. Melrose ◽  
K. G. Rönnmark

Ground-based observations of Jupiter’s decametric radio emission (DAM) have been reviewed by Ellis (1965), Warwick (1967, 1970) and Carr and Gulkis (1969). A startling feature of DAM is the modulating effect of Io, and interpretation of the Io effect has dominated theoretical discussions of DAM until quite recently, specifically until the fly-by s of Voyagers 1 and 2. The Voyager data showed that the DAM appears as nested arcs in the frequency-Jovian longitude plane (Warwick et al. 1979, Boischot et al. 1981). The interpretation of this arc structure has been of primary theoretical interest over the past two years. The most widely adopted explanation is that the emission from each point is confined to the surface of a hollow cone (Goldstein and Thieman 1981). This idea is not new: emission on the surface of a cone was discussed by Ellis and McCulloch (1963); Dulk (1967) derived detailed parameters for the cone (half angle 79° width 1°) from the occurrence pattern of DAM; and Goldreich and Lynden-Bell (1969) presented a theoretical interpretation of it. More recently Goldstein et al. (1979) used observational data on the Jovian magnetic field in deriving properties of the required emission cone. It seems that one requires the properties of the emission cone to vary with position in the Jovian magnetosphere to account for the nested arc pattern (Goldstein and Thieman 1981; Gurnett and Goertz 1981).


1997 ◽  
Vol 181 ◽  
pp. 277-285
Author(s):  
Y. Elsworth

Helioseismology provides us with the tools to probe solar activity. So that we can consider how the solar oscillations are influenced by that activity, we first consider the phenomena that we associate with the active Sun. The surface of the Sun is not quiet but shows evidence of convection on a wide range of scales from a few hundred kilometres through to several tens-of-thousands of kilometres. The surface temperature shows signs of the convection structures with the temperature in the bright granules being some 100 K to 200 K hotter than the surrounding dark lanes. Sunspots, which are regions of high magnetic field that suppress convective flows, are clearly visible to even quite crude observations. They are several tens-of-thousands of kilometres in diameter and about 2000 K cooler than their surroundings. Ultraviolet and X-ray pictures from satellites show that the higher layers of the solar atmosphere are very non-uniform with bright regions of high activity. Contemporaneous magnetograms show that these regions are associated with sunspots. Flares - regions of magnetic reconnections - are seen at all wavelengths from X-ray through the visible to radio. They are the non-thermal component of the radio emission of the Sun. There are many other indicators of activity on the Sun.


1996 ◽  
Vol 175 ◽  
pp. 487-488
Author(s):  
Y.Y. Kovalev

Here are reported new successful results of analysis for jet in the strong radial magnetic field of an active galactic nuclei, suggested in.


Sign in / Sign up

Export Citation Format

Share Document