EXPLORING THE POTENTIAL FOR OIL GENERATION, MIGRATION AND ACCUMULATION IN CAPE SORELL–1, SORELL BASIN, OFFSHORE WEST TASMANIA

2002 ◽  
Vol 42 (1) ◽  
pp. 405 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
I. Duddy ◽  
J. Newman ◽  
K. Liu ◽  
...  

Given the underexplored nature of the Sorell Basin, offshore Tasmania, the reported presence of oil stains and shows in the Late Cretaceous sequence below 3,000 m in Cape Sorell–1 is seen as encouraging evidence of an effective petroleum system. To investigate the significance of these shows, an integrated palynological, geochemical and burial history analysis of Cape Sorell–1 has been undertaken. New data have been collected on palynology, potential source rocks (biomarker and chemical kinetics), oil migration indicators (quantitative grain fluorescence—QGF, and grains–with–oil– inclusions—GOI) and thermal history parameters (vitrinite reflectance—VR, vitrinite–inertinite reflectance and fluorescence—VRF® and apatite fission track analysis—AFTA®). A synthesis of these analyses has resulted in a model that suggests that the terrestrial organic–rich potential source rocks in Cape Sorell–1 are very labile for hydrocarbon generation and are presently at the initial phase of oil generation. The model also indicates that increasing hydrocarbon generation with time reflects a progressive increase in temperature reaching maximum temperatures at the present–day. According to the model, accelerated rate of oil generation from the Maastrichtian potential source rock interval at ~3,200 m in the lower Sherbrook Group Equivalent occurred at ~48 Ma and is in response to the maximum burial heating rate in the Early Eocene, during rapid deposition of the thick Wangerrip Group Equivalent. This heating event may have been related to gateway opening along the Otway coast and west Tasmanian margin. Although there was a declining heating rate since the Early Eocene, gas and oil may continue to be generated to the present–day at Cape Sorell–1.The low content of mobile oil below sealing facies higher in the section negates a pervasive oil migration phase sourced down–dip from the basin centre, or from older sedimentary sequences below TD in Cape Sorell–1. However, the possibility that Cape Sorell–1 is in a migration shadow cannot be excluded. The restricted areal extent of the depocentre associated with Cape Sorell–1, together with thin, isolated potential source beds at the well site, would indicate the major risk for hydrocarbon occurrences in the local region is limited source rock volume. However, seismic evidence suggests the possible presence of similar facies within the deeper syn–rift succession below TD at Cape Sorell–1. The labile nature of the organic matter would support oil generation and migration at maturities lower and depths shallower than traditionally viewed. This work provides evidence to support a possible oil play from terrestrial source rocks in the Sorell Basin, and may also provide useful insights into recent large offshore gas discoveries to the north in the adjacent Otway Basin.

1987 ◽  
Vol 133 ◽  
pp. 141-157
Author(s):  
F.G Christiansen ◽  
H Nøhr-Hansen ◽  
O Nykjær

During the 1985 field season the Cambrian Henson Gletscher Formation in central North Greenland was studied in detail with the aim of evaluating its potential as a hydrocarbon source rock. The formation contains organic rich shale and carbonate mudstone which are considered to be potential source rocks. These are sedimentologically coupled with a sequence of sandstones and coarse carbonates which might be potential reservoir rocks or migration conduits. Most of the rocks exposed on the surface are, however, thermally mature to postrnature with respect to hydrocarbon generation, leaving only few chances of finding trapped oil in the subsurface of the area studied in detail.


2016 ◽  
Author(s):  
Samuel Salufu ◽  
Rita Onolemhemhen ◽  
Sunday Isehunwa

ABSTRACT This paper sought to use information from outcrop sections to characterize the source and reservoir rocks in a basin in order to give indication(s) for hydrocarbon generation potential in a basin in minimizing uncertainty and risk that are allied with exploration and field development of oil and gas, using subsurface data from well logs, well sections, seismic and core. The methods of study includes detailed geological, stratigraphical, geochemical, structural,, petro-graphical, and sedimentological studies of rock units from outcrop sections within two basins; Anambra Basin and Abakaliki Basin were used as case studies. Thirty eight samples of shale were collected from these Basins; geochemical analysis (rockeval) was performed on the samples to determine the total organic content (TOC) and to assess the oil generating window. The results were analyzed using Rock wares, Origin, and Surfer software in order to properly characterize the potential source rock(s) and reservoir rock(s) in the basins, and factor(s) that can favour hydrocarbon traps. The results of the geological, stratigraphical, sedimentological, geochemical, and structural, were used to developed a new model for hydrocarbon generation in the Basins. The result of the geochemical analysis of shale samples from the Anambra Basin shows that the TOC values are ≥ 1wt%, Tmax ≥ 431°C, Vitrinite reflectance values are ≥ 0.6%, and S1+S2 values are > 2.5mg/g for Mamu Formation while shale samples from other formations within Anambra Basin fall out of these ranges. The shale unit in the Mamu Formation is the major source rock for oil generation in the Anambra Basin while others have potential for gas generation with very little oil generation. The shale samples from Abakaliki Basin shows that S1+S2 values range from< 1 – 20mg/g, TOC values range from 0.31-4.55wt%, vitrinite reflectance ranges from 0.41-1.24% and Tmax ranges from423°C – 466°C. This result also shows that there is no source rock for oil generation in Abakaliki Basin; it is either gas or graphite. This observation indicates that all the source rocks within Abakaliki Basin have exceeded petroleum generating stage due to high geothermal heat resulting from deep depth or the shale units have not attained catagenesis stage as a result of S1+S2 values lesser than 2.5mg/g despite TOC values of ≥ 0.5wt% and vitrinite reflectance values of ≥ 0.6%. The novelty of this study is that the study has been able to show that here there is much more oil than the previous authors claimed, and the distribution of this oil and gas in the basins is controlled by two major factors; the pattern of distribution of the materials of the source rock prior to subsidence and during the subsidence period in the basin, and the pattern and the rate of tectonic activities, and heat flow in the basin. If these factors are known, it would help to reduce the uncertainties associated with exploration for oil and gas in the two basins.


1997 ◽  
Vol 37 (1) ◽  
pp. 285
Author(s):  
K. Mehin ◽  
A.G. Link

Evaluation of Early Cretaceous source rocks within the onshore Victoria Otway Basin has revealed that thick, mature shales containing predominantly gas-prone and in local concentrations, oil-prone macerals exist northwest of Portland, in the Tyrendarra Embayment, and around the Port Campbell region.Current results of Rock-Eval, bulk composition, gas chromatography, and biomarker analyses, coupled with geohistory and hydrocarbon generation interpretations, indicate that at least three phases of oil generation and expulsion occurred within the basin. The earliest phase, which coincided with the maximum heatflow in the crust around 100 Ma, resulted in the charging of the existing stratigraphic/shoestring traps of the basin. The second and third phases occurred in the eastern end of the basin at around 85 and 60 Ma. There is also evidence to suggest that structural traps of the eastern areas were formed later, during Oligocene time, and that these traps are probably still receiving late-stage charges of hydrocarbons.Although the sparse well density in the basin has resulted in limited, non-uniforin sampling opportunities, several regions with good Early Cretaceous source rocks can be recognised. Some of these good source rock areas are in close proximity to the several known hydrocarbon shows and producing fields. These current studies, which also include a source rock risk analysis indicating source rock adequacy, show that locations for future exploration could include the Casterton-Portland-Mt Gambier western region, the Peterborough-Port Campbell eastern region, and the prospective close peripheries and offshore extensions of these regions.


2020 ◽  
Vol 10 (4) ◽  
pp. 95-120
Author(s):  
Rzger Abdulkarim Abdula

Burial history, thermal maturity, and timing of hydrocarbon generation were modeled for five key source-rock horizons at five locations in Northern Iraq. Constructed burial-history locations from east to west in the region are: Taq Taq-1; Qara Chugh-2; Zab-1; Guwair-2; and Shaikhan-2 wells. Generally, the thermal maturity status of the burial history sites based on increasing thermal maturity is Shaikhan-2 < Zab-1 < Guwair-2 < Qara Chugh-2 < Taq Taq-1. In well Qara Chugh-2, oil generation from Type-IIS kerogen in Geli Khana Formation started in the Late Cretaceous. Gas generation occurred at Qara Chugh-2 from Geli Khana Formation in the Late Miocene. The Kurra Chine Formation entered oil generation window at Guwair-2 and Shaikhan-2 at 64 Ma and 46 Ma, respectively. At Zab-1, the Baluti Formation started to generate gas at 120 Ma. The Butmah /Sarki reached peak oil generation at 45 Ma at Taq Taq-1. The main source rock in the area, Sargelu Formation started to generate oil at 47, 51, 33, 28, and 28 Ma at Taq Taq-1, Guwair-2, Shaikhan-2, Qara Chugh-2, and Zab-1, respectively. The results of the models demonstrated that peak petroleum generation from the Jurassic oil- and gas-prone source rocks in the most profound parts of the studied area occurred from Late Cretaceous to Middle Oligocene. At all localities, the Sargelu Formation is still within the oil window apart from Taq Taq-1 and Qara Chugh-2 where it is in the oil cracking and gas generation phase.


Author(s):  
Sebastian Grohmann ◽  
Susanne W. Fietz ◽  
Ralf Littke ◽  
Samer Bou Daher ◽  
Maria Fernanda Romero-Sarmiento ◽  
...  

Several significant hydrocarbon accumulations were discovered over the past decade in the Levant Basin, Eastern Mediterranean Sea. Onshore studies have investigated potential source rock intervals to the east and south of the Levant Basin, whereas its offshore western margin is still relatively underexplored. Only a few cores were recovered from four boreholes offshore southern Cyprus by the Ocean Drilling Program (ODP) during the drilling campaign Leg 160 in 1995. These wells transect the Eratosthenes Seamount, a drowned bathymetric high, and recovered a thick sequence of both pre- and post-Messinian sedimentary rocks, containing mainly marine marls and shales. In this study, 122 core samples of Late Cretaceous to Messinian age were analyzed in order to identify organic-matter-rich intervals and to determine their depositional environment as well as their source rock potential and thermal maturity. Both Total Organic and Inorganic Carbon (TOC, TIC) analyses as well as Rock-Eval pyrolysis were firstly performed for the complete set of samples whereas Total Sulfur (TS) analysis was only carried out on samples containing significant amount of organic matter (>0.3 wt.% TOC). Based on the Rock-Eval results, eight samples were selected for organic petrographic investigations and twelve samples for analysis of major aliphatic hydrocarbon compounds. The organic content is highly variable in the analyzed samples (0–9.3 wt.%). TS/TOC as well as several biomarker ratios (e.g. Pr/Ph < 2) indicate a deposition under dysoxic conditions for the organic matter-rich sections, which were probably reached during sporadically active upwelling periods. Results prove potential oil prone Type II kerogen source rock intervals of fair to very good quality being present in Turonian to Coniacian (average: TOC = 0.93 wt.%, HI = 319 mg HC/g TOC) and in Bartonian to Priabonian (average: TOC = 4.8 wt.%, HI = 469 mg HC/g TOC) intervals. A precise determination of the actual source rock thickness is prevented by low core recovery rates for the respective intervals. All analyzed samples are immature to early mature. However, the presence of deeper buried, thermally mature source rocks and hydrocarbon migration is indicated by the observation of solid bitumen impregnation in one Upper Cretaceous and in one Lower Eocene sample.


Sign in / Sign up

Export Citation Format

Share Document