Hydrocarbon Generation Indication from Source Rock to Reservoir Rock: Case Studies of Anambra and Abakaliki Basins South-Eastern Nigeria

2016 ◽  
Author(s):  
Samuel Salufu ◽  
Rita Onolemhemhen ◽  
Sunday Isehunwa

ABSTRACT This paper sought to use information from outcrop sections to characterize the source and reservoir rocks in a basin in order to give indication(s) for hydrocarbon generation potential in a basin in minimizing uncertainty and risk that are allied with exploration and field development of oil and gas, using subsurface data from well logs, well sections, seismic and core. The methods of study includes detailed geological, stratigraphical, geochemical, structural,, petro-graphical, and sedimentological studies of rock units from outcrop sections within two basins; Anambra Basin and Abakaliki Basin were used as case studies. Thirty eight samples of shale were collected from these Basins; geochemical analysis (rockeval) was performed on the samples to determine the total organic content (TOC) and to assess the oil generating window. The results were analyzed using Rock wares, Origin, and Surfer software in order to properly characterize the potential source rock(s) and reservoir rock(s) in the basins, and factor(s) that can favour hydrocarbon traps. The results of the geological, stratigraphical, sedimentological, geochemical, and structural, were used to developed a new model for hydrocarbon generation in the Basins. The result of the geochemical analysis of shale samples from the Anambra Basin shows that the TOC values are ≥ 1wt%, Tmax ≥ 431°C, Vitrinite reflectance values are ≥ 0.6%, and S1+S2 values are > 2.5mg/g for Mamu Formation while shale samples from other formations within Anambra Basin fall out of these ranges. The shale unit in the Mamu Formation is the major source rock for oil generation in the Anambra Basin while others have potential for gas generation with very little oil generation. The shale samples from Abakaliki Basin shows that S1+S2 values range from< 1 – 20mg/g, TOC values range from 0.31-4.55wt%, vitrinite reflectance ranges from 0.41-1.24% and Tmax ranges from423°C – 466°C. This result also shows that there is no source rock for oil generation in Abakaliki Basin; it is either gas or graphite. This observation indicates that all the source rocks within Abakaliki Basin have exceeded petroleum generating stage due to high geothermal heat resulting from deep depth or the shale units have not attained catagenesis stage as a result of S1+S2 values lesser than 2.5mg/g despite TOC values of ≥ 0.5wt% and vitrinite reflectance values of ≥ 0.6%. The novelty of this study is that the study has been able to show that here there is much more oil than the previous authors claimed, and the distribution of this oil and gas in the basins is controlled by two major factors; the pattern of distribution of the materials of the source rock prior to subsidence and during the subsidence period in the basin, and the pattern and the rate of tectonic activities, and heat flow in the basin. If these factors are known, it would help to reduce the uncertainties associated with exploration for oil and gas in the two basins.

2020 ◽  
Vol 12 (1) ◽  
pp. 990-1002
Author(s):  
Shouliang Sun ◽  
Tao Zhang ◽  
Yongfei Li ◽  
Shuwang Chen ◽  
Qiushi Sun

AbstractMesozoic intrusive bodies play an important role in the temperature history and hydrocarbon maturation of the Jinyang Basin in northeastern China. The Beipiao Formation, which is the main source rock in Jinyang Basin, was intruded by numerous igneous bodies and dykes in many areas. The effects of igneous intrusive bodies on thermal evolution and hydrocarbon generation and migration in the Beipiao Formation were investigated. A series of samples from the outcrop near the intrusive body were analyzed for vitrinite reflectance (R0%) and other organic geochemical parameters to evaluate the lateral extension of the thermal aureole. The R0 values of the samples increase from a background value of ∼0.9% at a distance above 200 m from the intrusive body to more than 2.0% at the vicinity of the contact zone. The width of the altered zone is equal to the thickness of the intrusive body outcropped in the field. Organic geochemical proxies also indicate the intrusive body plays a positive and beneficial role in the formation of regional oil and gas resources. Due to the influence of the anomalous heat from the intrusive body, the hydrocarbon conversion rate of the source rocks of the Beipiao Formation was significantly improved. The accumulation properties and the storage capacity of the shales also greatly improved due to the intrusive body as indicated by the free hydrocarbon migration in the shales. This new understanding not only provides a reliable scientific basis for the accurate assessment of oil and gas genesis and resources in the Jinyang Basin but also provides guidance and reference for oil and gas exploration in the similar type of basin.


2020 ◽  
Vol 10 (4) ◽  
pp. 95-120
Author(s):  
Rzger Abdulkarim Abdula

Burial history, thermal maturity, and timing of hydrocarbon generation were modeled for five key source-rock horizons at five locations in Northern Iraq. Constructed burial-history locations from east to west in the region are: Taq Taq-1; Qara Chugh-2; Zab-1; Guwair-2; and Shaikhan-2 wells. Generally, the thermal maturity status of the burial history sites based on increasing thermal maturity is Shaikhan-2 < Zab-1 < Guwair-2 < Qara Chugh-2 < Taq Taq-1. In well Qara Chugh-2, oil generation from Type-IIS kerogen in Geli Khana Formation started in the Late Cretaceous. Gas generation occurred at Qara Chugh-2 from Geli Khana Formation in the Late Miocene. The Kurra Chine Formation entered oil generation window at Guwair-2 and Shaikhan-2 at 64 Ma and 46 Ma, respectively. At Zab-1, the Baluti Formation started to generate gas at 120 Ma. The Butmah /Sarki reached peak oil generation at 45 Ma at Taq Taq-1. The main source rock in the area, Sargelu Formation started to generate oil at 47, 51, 33, 28, and 28 Ma at Taq Taq-1, Guwair-2, Shaikhan-2, Qara Chugh-2, and Zab-1, respectively. The results of the models demonstrated that peak petroleum generation from the Jurassic oil- and gas-prone source rocks in the most profound parts of the studied area occurred from Late Cretaceous to Middle Oligocene. At all localities, the Sargelu Formation is still within the oil window apart from Taq Taq-1 and Qara Chugh-2 where it is in the oil cracking and gas generation phase.


The Rock–Eval pyrolysis and LECO analysis for 9 shale and 12 coal samples, as well as, geostatistical analysis have been used to investigate source rock characteristics, correlation between the assessed parameters (QI, BI, S1, S2, S3, HI, S1 + S2, OI, PI, TOC) and the impact of changes in the Tmax on the assessed parameters in the Cretaceous Sokoto, Anambra Basins and Middle Benue Trough of northwestern, southeastern and northcentral Nigeria respectively. The geochemical results point that about 97% of the samples have TOC values greater than the minimum limit value (0.5 wt %) required to induce hydrocarbon generation from source rocks. Meanwhile, the Dukamaje and Taloka shales and Lafia/Obi coal are found to be fair to good source rock for oil generation with slightly higher thermal maturation. The source rocks are generally immature through sub-mature to marginal mature with respect to the oil and gas window, while the potential source rocks from the Anambra Basin are generally sub-mature grading to mature within the oil window. The analyzed data were approached statistically to find some relations such as factors, and clusters concerning the examination of the source rocks. These factors were categorized into type of organic matter and organic richness, thermal maturity and hydrocarbon potency. In addendum, cluster analysis separated the source rocks in the study area into two groups. The source rocks characterized by HI >240 (mg/g), TOC from 58.89 to 66.43 wt %, S1 from 2.01 to 2.54 (mg/g) and S2 from 148.94 to 162.52 (mg/g) indicating good to excellent source rocks with kerogen of type II and type III and are capable of generating oil and gas. Followed by the Source rocks characterized by HI <240 (mg/g), TOC from 0.94 to 36.12 wt%, S1 from 0.14 to 0.72 (mg/g) and S2 from 0.14 to 20.38 (mg/g) indicating poor to good source rocks with kerogen of type III and are capable of generating gas. Howeverr, Pearson’s correlation coefficient and linear regression analysis shows a significant positive correlation between TOC and S1, S2 and HI and no correlation between TOC and Tmax, highly negative correlation between TOC and OI and no correlation between Tmax and HI. Keywords- Cretaceous, Geochemical, Statistical, Cluster; Factor analyses.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 650 ◽  
Author(s):  
Jinliang Zhang ◽  
Jiaqi Guo ◽  
Jinshui Liu ◽  
Wenlong Shen ◽  
Na Li ◽  
...  

The Lishui Sag is located in the southeastern part of the Taibei Depression, in the East China Sea basin, where the sag is the major hydrocarbon accumulation zone. A three dimensional modelling approach was used to estimate the mass of petroleum generation and accumulated during the evolution of the basin. Calibration of the model, based on measured maturity (vitrinite reflectance) and borehole temperatures, took into consideration two main periods of erosion events: a late Cretaceous to early Paleocene event, and an Oligocene erosion event. The maturation histories of the main source rock formations were reconstructed and show that the peak maturities have been reached in the west central part of the basin. Our study included source rock analysis, measurement of fluid inclusion homogenization temperatures, and basin history modelling to define the source rock properties, the thermal evolution and hydrocarbon generation history, and possible hydrocarbon accumulation processes in the Lishui Sag. The study found that the main hydrocarbon source for the Lishui Sag are argillaceous source rocks in the Yueguifeng Formation. The hydrocarbon generation period lasted from 58 Ma to 32 Ma. The first period of hydrocarbon accumulation lasted from 51.8 Ma to 32 Ma, and the second period lasted from 23 Ma to the present. The accumulation zones mainly located in the structural high and lithologic-fault screened reservoir filling with the hydrocarbon migrated from the deep sag in the south west direction.


2020 ◽  
Vol 17 (6) ◽  
pp. 1540-1555
Author(s):  
Jin-Jun Xu ◽  
Qiang Jin

AbstractNatural gas and condensate derived from Carboniferous-Permian (C-P) coaly source rocks discovered in the Dagang Oilfield in the Bohai Bay Basin (east China) have important implications for the potential exploration of C-P coaly source rocks. This study analyzed the secondary, tertiary, and dynamic characteristics of hydrocarbon generation in order to predict the hydrocarbon potentials of different exploration areas in the Dagang Oilfield. The results indicated that C-P oil and gas were generated from coaly source rocks by secondary or tertiary hydrocarbon generation and characterized by notably different hydrocarbon products and generation dynamics. Secondary hydrocarbon generation was completed when the maturity reached vitrinite reflectance (Ro) of 0.7%–0.9% before uplift prior to the Eocene. Tertiary hydrocarbon generation from the source rocks was limited in deep buried sags in the Oligocene, where the products consisted of light oil and gas. The activation energies for secondary and tertiary hydrocarbon generation were 260–280 kJ/mol and 300–330 kJ/mol, respectively, indicating that each instance of hydrocarbon generation required higher temperature or deeper burial than the previous instance. Locations with secondary or tertiary hydrocarbon generation from C-P coaly source rocks were interpreted as potential oil and gas exploration regions.


2021 ◽  
Vol 25 (3) ◽  
pp. 353-362
Author(s):  
M.U. Uzoegbu ◽  
C.U. Ugwueze

TRACT: The Cretaceous sediments in the Anambra Basin (SE Nigeria) consist of a cyclic succession of coals, carbonaceous shales, silty shales and siltstones  interpreted as deltaic deposits. The objective of this study is to compare the hydrocarbon generation potential of organic matter from shale sediments along Isugwuato-Okigwe axis in the Anambra Basin, Nigeria. Data obtained indicates the presence of Type III kerogen with Tmax values are between 424 and 441ºC indicating that the shales are thermally immature to marginally mature with respect to petroleum generation. Hydrogen Index (HI) values range from 14 to 388.9mgHC/gTOC while S1 + S2 yields values ranging from 0.2 to 1.0mgHC/g rock, suggesting that the shale have gas generating potential. The TOC values rangesfrom 1.3 to 3.0%, an indication of a good source rock of terrestrially derived organic matter. The high oxygen index (OI) (16.3 mgCO2g-1TOC), TS (1.35) and TOC/TS (1.5) suggest deposition in a shallow marine environment. Based on the kerogen type, shales from the studied area will equally generate oil and gas if its organic matter attained sufficient thermal temperature. Keywords: Shale, kerogen type, maturity, oil generation.


2019 ◽  
Vol 16 (5) ◽  
pp. 972-980
Author(s):  
Ting Wang ◽  
Jacobi David

Abstract The Devonian Woodford Shale in the Anadarko Basin is a highly organic, hydrocarbon source rock. Accurate values of vitrinite reflectance (Ro) present in the Woodford Shale penetrated by 52 control wells were measured directly. These vitrinite reflectance values, when plotted against borehole resistivity for the middle member of the Woodford Shale in the wells, display a rarely reported finding that deep resistivity readings decrease as Ro increases when Ro is greater than 0.90%. This phenomenon may be attributed to that aromatic and resin compounds containing conjugated pi bonds generated within source rocks are more electrically conductive than aliphatic compounds. And aromatic and resin fractions were generated more than aliphatic fraction when source rock maturity further increases beyond oil peak. The finding of the relationship between deep resistivity and Ro may re-investigate the previously found linear relationship between source rock formation and aid to unconventional play exploration.


2020 ◽  
Vol 66 (4) ◽  
pp. 223-233
Author(s):  
O.A. Oluwajana ◽  
A.O. Opatola ◽  
O.B. Ogbe ◽  
T.D. Johnson

AbstractSubsurface information on source rock potential of the Eocene shale unit of the Abakaliki Fold Belt is limited and has not been widely discussed. The total organic carbon (TOC) content and results of rock-eval pyrolysis for nine shale samples, as well as the one-dimensional (1D) geochemical model, from an exploration well in the Abakaliki Fold Belt were used to evaluate the source rock potentials and timing of hydrocarbon generation of Lower Eocene source rocks. The TOC content values of all the samples exceeded the minimum threshold value of 0.5 wt.% required for potential source rocks. A pseudo-Van Krevelen plot for the shale samples indicated Type II–III organic matter capable of generating gaseous hydrocarbon at thermally mature subsurface levels. The 1D burial model suggests that the Eocene source rock is capable of generating oil and gas at the present time. The modelled transformation ratio trend indicates that a fair amount of hydrocarbon has been expelled from the source rocks. The results of this study indicate that the Eocene source units may have charged the overlying thin Eocene sand bodies of the Abakaliki Fold Belt.


1997 ◽  
Vol 37 (1) ◽  
pp. 285
Author(s):  
K. Mehin ◽  
A.G. Link

Evaluation of Early Cretaceous source rocks within the onshore Victoria Otway Basin has revealed that thick, mature shales containing predominantly gas-prone and in local concentrations, oil-prone macerals exist northwest of Portland, in the Tyrendarra Embayment, and around the Port Campbell region.Current results of Rock-Eval, bulk composition, gas chromatography, and biomarker analyses, coupled with geohistory and hydrocarbon generation interpretations, indicate that at least three phases of oil generation and expulsion occurred within the basin. The earliest phase, which coincided with the maximum heatflow in the crust around 100 Ma, resulted in the charging of the existing stratigraphic/shoestring traps of the basin. The second and third phases occurred in the eastern end of the basin at around 85 and 60 Ma. There is also evidence to suggest that structural traps of the eastern areas were formed later, during Oligocene time, and that these traps are probably still receiving late-stage charges of hydrocarbons.Although the sparse well density in the basin has resulted in limited, non-uniforin sampling opportunities, several regions with good Early Cretaceous source rocks can be recognised. Some of these good source rock areas are in close proximity to the several known hydrocarbon shows and producing fields. These current studies, which also include a source rock risk analysis indicating source rock adequacy, show that locations for future exploration could include the Casterton-Portland-Mt Gambier western region, the Peterborough-Port Campbell eastern region, and the prospective close peripheries and offshore extensions of these regions.


1985 ◽  
Vol 25 (1) ◽  
pp. 62 ◽  
Author(s):  
P.W. Vincent I.R. Mortimore ◽  
D.M. McKirdy

The northern part of the Naccowlah Block, situated in the southeastern part of the Authority to Prospect 259P in southwestern Queensland, is a major Eromanga Basin hydrocarbon province. The Hutton Sandstone is the main reservoir but hydrocarbons have been encountered at several levels within the Jurassic-Cretaceous sequence. In contrast, the underlying Cooper Basin sequence is generally unproductive in the Naccowlah Block although gas was discovered in the Permian at Naccowlah South 1. Oil and gas discoveries within the Eromanga Basin sequence are confined to the Naccowlah-Jackson Trend. This trend forms a prominent high separating the deep Nappamerri Trough from the shallower, more stable northern part of the Cooper Basin.The Murta Member is mature for initial oil generation along the Naccowlah-Jackson Trend and has sourced the small oil accumulations within this unit and the underlying Namur Sandstone Member. The Birkhead Formation is a good source unit in this area with lesser oil source potential also evident in the Westbourne Formation and 'basal Jurassic'. Source quality and maturation considerations imply that much of the oil discovered in Jurassic reservoirs along the Naccowlah-Jackson Trend was generated from more mature Jurassic source beds in the Nappamerri Trough area to the southwest. Maturation modelling of this deeper section suggests that hydrocarbon generation from Jurassic source units commenced in the Early Tertiary. Significant oil generation and migration has therefore occurred since the period of major structural development of the Naccowlah-Jackson Trend in the Early Tertiary. This trend, however, has long been a major focus for hydrocarbon migration paths out of the Nappamerri Trough as a result of intermittent structuring during the Mesozoic. Gas reservoired in Jurassic sandstones at Chookoo has been generated from more mature Jurassic source rocks in the deeper parts of the Nappamerri Trough.Permian sediments in the Nappamerri Trough area are overmature for oil generation and are gas prone. Gas generated in this area has charged the lean Permian gas Field at Naccowlah South, along the Wackett-Naccowlah- Jackson Trend. North of this trend Permian source rocks are mainly gas prone but more favourable levels of maturity allow the accumulation of some gas liquids and oil. However, geological and geochemical evidence suggests that Permian sediments did not source the oil found in Jurassic-Cretaceous reservoirs in the Jackson- Naccowlah area.


Sign in / Sign up

Export Citation Format

Share Document