heating event
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Ronald J. Warzoha ◽  
Adam A. Wilson ◽  
Brian F. Donovan ◽  
Andy Clark ◽  
Xuemei Cheng ◽  
...  

Abstract Quantifying the resistance to heat flow across well-bonded, planar interfaces is critical in modern electronics packaging architectures, particularly as device length scales are reduced and power demands continue to grow unabated. However, very few experimental techniques are capable of measuring the thermal resistance across such interfaces due to limitations in the required measurement resolution provided by the characterization technique (i.e., Rth < 0.1 mm2·K/W in steady-state configurations) and restrictions on the thermal penetration depth that can be achieved as a result of the heating event that is typically imposed on a sample’s surface (for optical pump-probe thermoreflectance techniques). A recent numerical fitting routine for Frequency-domain Thermoreflectance (FDTR) developed by the authors1 offers a potential avenue to rectify these issues if the transducer’s geometry can be confined. This work utilizes numerical simulations to evaluate the sensitivity of FDTR to a range of thermal boundary resistance (TBR) values as a function of the thermal resistance of adjacent material layers. Experimental measurements are performed across a handful of different material systems to validate our computational results and to demonstrate the the extent to which confined transducer geometries can improve our sensitivyt to the TBR across so-called “buried” interfaces when characterized with FDTR.


Author(s):  
L.D. Ashwal

Abstract At least four spatially overlapping Large Igneous Provinces, each of which generated ∼1 x 106 km3 or more of basaltic magmas over short time intervals (<5 m.y.), were emplaced onto and into the Kaapvaal Craton between 2.7 and 0.18 Ga: Ventersdorp (2 720 Ma, ∼0.7 x 106 km3), Bushveld (2 056 Ma, ∼1.5 x 106 km3), Umkondo (1 105 Ma, ∼2 x 106 km3) and Karoo (182 Ma, ∼3 x 106 km3). Each of these has been suggested to have been derived from melting of sub-continental lithospheric mantle (SCLM) sources, but this is precluded because: (1) each widespread heating event sufficient to generate 1 to 2 x 106 km3 of basalt from the Kaapvaal SCLM (volume = 122 to 152 x 106 km3) would increase residual Mg# by 0.5 to 2 units, depending on degree of melting, and source and melt composition, causing significant depletion in already-depleted mantle, (2) repeated refertilization of the Kaapvaal SCLM would necessarily increase its bulk density, compromising its long-term buoyancy and stability, and (3) raising SCLM temperatures to the peridotite solidus would also have repeatedly destroyed lithospheric diamonds by heating and oxidation, which clearly did not happen. It is far more likely, therefore, that the Kaapvaal LIPs were generated from sub-lithospheric sources, and that their diverse geochemical and isotopic signatures represent variable assimilation of continental crustal components. Combined Sr and Nd isotopic data (n = 641) for the vast volumetric majority of Karoo low-Ti tholeiitic magmatic products can be successfully modelled as an AFC mixing array between a plume-derived parental basalt, with <10% of a granitic component derived from 1.1 Ga Namaqua-Natal crust. Archaean crustal materials are far too evolved (εNd ∼ -35) to represent viable contaminants. However, a very minor volume of geographically-restricted (and over-analysed) Karoo magmas, including picrites, nephelinites, meimechites and other unusual rocks may represent low-degree melting products of small, ancient, enriched domains in the Kaapvaal SCLM, generated locally during the ascent of large-volume, plume-derived melts. The SCLM-derived rocks comprise the well-known high-Ti (>2 to 3 wt.% TiO2) magma group, have εNd, 182 values between +10.5 and -20.9, and are characteristically enriched in Sr (up to 1 500 ppm), suggesting a possible connection to kimberlite, lamproite and carbonatite magmatism. These arguments may apply to continental LIPs in general, although at present, there are insufficient combined Sr + Nd isotopic data with which to robustly assess the genesis of other southern African LIPs, including Ventersdorp (n = 0), Bushveld (n = 55) and Umkondo (n = 18).


Author(s):  
Bradley W Pitcher ◽  
Guilherme A R Gualda ◽  
Takeshi Hasegawa

Abstract During the Early Pleistocene, numerous caldera-forming eruptions occurred in the southernmost Kurile arc (central Hokkaido, Japan), building an extensive pyroclastic plateau with an area >1600 km2. The arc remains active today, and proximity to populations and infrastructure makes understanding these magmatic systems a critical endeavor. We investigate three major caldera-forming ignimbrite eruptions: Biei (ca. 2.0 Ma), Tokachi (ca. 1.2 Ma), and Tokachi-Mitsumata (ca. 1.0 Ma), with an emphasis on constraining the pressures of magma extraction and storage and the timescales of crystallization. Although all pumice glass compositions from the three eruptions are high-silica rhyolites (77-78 wt. % SiO2), hierarchical clustering analysis of major and trace element glass data indicates that the Tokachi and Tokachi-Mistumata ignimbrites each have two distinct pumice populations (Type-1F and Type-2F). We find that these two distinct pumice types record pre-eruptive temperatures, extraction pressures, and crystallization timescales that are strikingly similar between the two eruptions. Using the rhyolite-MELTS geobarometer, we estimate that although all magma types from all three eruptions had storage pressures of 50-150 MPa (∼2-6 km), Type-1F magma was extracted from a deeper mush reservoir (200-450 MPa) compared to Type-2F (100-200 MPa). Pre-eruptive temperatures, constrained by plagioclase-liquid equilibration thermometry and rhyolite-MELTS, suggest that Type-1F magma in both eruptions was hotter (800-820 °C) compared to Type-2F (780-800 °C), but that both reached thermal equilibrium upon eruption (760-780 °C). Since zircon is only observed as inclusions and rarely in contact with glass, we conclude that all magmas were zircon-undersaturated, and thus zircon saturation temperatures, which are 60-100 °C lower than those estimated by the other three independent thermometers, underestimate magmatic temperatures. Using these temperatures as minimum estimates, diffusional relaxation times of Ti zonation in quartz, as revealed by cathodoluminescence, give absolute maximum quartz residence times of < 1,800 for Type-2F samples and < 600 years for Type-1F for all samples; residence times are < 300 years for all samples if the more reasonable Fe-Ti oxide temperature is used instead (∼770 °C). Our modelling therefore suggests that the melt-dominated rhyolite magmas that fed these caldera-forming eruptions were ephemeral features that crystallized within the shallow crust for centuries to several millennia. Rapid rim growth occurred in all magma types in all three eruptions, with a majority of quartz rims (10-200 µm) having grown in less than two years. Using plagioclase textures and major and trace element data, we conclude that the bright-CL rims of quartz resulted from decompression and subsequent rapid growth, rather than by a recharge-driven heating event. Thus, decompression occurred within two years prior to eruption. Remarkably, the two distinct magma types are statistically similar in terms of composition, crystallization timescales, magma storage conditions, and extraction depths, despite being from eruptions that occurred 240 ka apart, and from calderas that are separated by 35 km. This suggests magma assembly and storage processes that are spatiotemporally repetitive in this region of Hokkaido.


Author(s):  
Maria Laura Gomez Dacal ◽  
Magdalena Scheck-Wenderoth ◽  
Eugenio Aragón ◽  
Judith Bott ◽  
Mauro Cacace ◽  
...  

AbstractThe North Patagonian Massif (NPM) area in Argentina includes a plateau of 1200 m a.s.l. (meters above sea level) average height, which is 500–700 m higher than its surrounding areas. The plateau shows no evidence of internal deformation, while the surrounding basins have been deformed during Cenozoic orogenic events. Previous works suggested that the plateau formation was caused by a lithospheric uplift event during the Paleogene. However, the causative processes responsible for the plateau origin and its current state remain speculative. To address some of these questions, we carried out 3D lithospheric-scale steady-state and transient thermal simulations of the NPM and its surroundings, as based on an existing 3D geological model of the area. Our results are indicative of a thicker and warmer lithosphere below the NPM plateau compared with its surroundings, suggesting that the plateau is still isostatically buoyant and thus explaining its present-day elevation. The transient thermal simulations agree with a heating event in the mantle during the Paleogene as the causative process leading to lithospheric uplift in the region and indicate that the thermo-mechanical effects of such an event would still be influencing the plateau evolution today. Although the elevation related to the heating would not be enough to reach the present plateau topography, we discuss other mechanisms, also connected with the mantle heating, that may have caused the observed relief. Lithosphere cooling in the plateau is ongoing, being delayed by the presence of a thick crust enriched in radiogenic minerals as compared to its sides, resulting in a thermal configuration that has yet to reach thermodynamic equilibrium.


2020 ◽  
Vol 123 (4) ◽  
pp. 633-648
Author(s):  
D.H. Cornell ◽  
M. Harris ◽  
B.S. Mapani ◽  
T. Malobela ◽  
D. Frei ◽  
...  

Abstract The volcanosedimentary Guperas Formation contains the youngest volcanic rocks of the Sinclair Supergroup in the Konkiep Terrane of southern Namibia. Precise U-Pb zircon microbeam dating shows that the Guperas Formation as mapped includes felsic volcanic rocks which belong to both the first (1.37 to 1.33 Ga) and the third (1.11 to 1.07 Ga) magmatic cycle of the Sinclair Supergroup. Volcanic rocks of the ‘true’ Guperas Formation are dated by three samples, with a combined age of 1108 ± 10 Ma. The sedimentary rocks mapped as Guperas Formation are also distinguished by two different detrital age spectra into the ~1 100 Ma true Guperas Formation and the Aruab Member of the ~1 217 Ma Barby Formation. Geochronology now resolves the previous stratigraphic separation of the very similar Nubib and Rooiberg (Sonntag) Granites. The two small outcrops of 1 334 ± 5 Ma Rooiberg Granite are now shown to be part of the regional 1 334 ± 8 Ma Nubib Granite batholith. The Konkiep Terrane was affected by faulting and shear zones, but was only gently folded and not involved in regional metamorphism, despite its proximity to the Namaqua-Natal Province to the southwest. This is due to the Konkiep Terrane having a thick and strong continental basement which may have formed as part of the mainly Palaeoproterozoic Rehoboth Province. However no Palaeoproterozoic rocks are exposed in the Konkiep Terrane, which is now interpreted as an unaffiliated terrane. The three cycles of extrusive and plutonic magmatism in the Sinclair Supergroup formed in chronologically distinct periods and different tectonic settings, which requires revision of the stratigraphic nomenclature. The Konkiep Group is replaced by three new groups which are separated by >100 million-year unconformities. The Betta Group, represented by the mainly volcanic Kumbis, Nagatis and Welverdiend formations in the first magmatic cycle, probably formed in a passive continental rift setting due to breakup of the Rehoboth Province between 1 374 and 1 334 Ma. The Vergenoeg Group, represented by the sedimentary Kunjas and volcanic Barby and Haiber Flats formations, formed in a subduction setting at the margin of the Konkiep Terrane. This ~1 217 to 1204 Ma magmatic cycle ended with the accretion of Namaqua-Natal terranes to the Kalahari Craton. The ~1 100 Ma Ganaams Group, represented by the volcanic Guperas Formation and sedimentary Aubures Formation, was the result of interplay between the continental-scale Umkondo mantle heating event and movements between crustal blocks following the Namaqua-Natal collisional orogeny.


2020 ◽  
Vol 496 (3) ◽  
pp. 2715-2725
Author(s):  
C O G Waterfall ◽  
P K Browning ◽  
G A Fuller ◽  
M Gordovskyy ◽  
S Orlando ◽  
...  

ABSTRACT We model the time-dependent radio emission from a disc accretion event in a T-Tauri star using 3D, ideal magnetohydrodynamic simulations combined with a gyrosynchrotron emission and radiative transfer model. We predict for the first time, the multifrequency (1–1000 GHz) intensity and circular polarization from a flaring T-Tauri star. A flux tube, connecting the star with its circumstellar disc, is populated with a distribution of non-thermal electrons that is allowed to decay exponentially after a heating event in the disc and the system is allowed to evolve. The energy distribution of the electrons, as well as the non-thermal power-law index and loss rate, are varied to see their effect on the overall flux. Spectra are generated from different lines of sight, giving different views of the flux tube and disc. The peak flux typically occurs around 20–30 GHz and the radio luminosity is consistent with that observed from T-Tauri stars. For all simulations, the peak flux is found to decrease and move to lower frequencies with elapsing time. The frequency-dependent circular polarization can reach 10$-30{{\ \rm per\ cent}}$ but has a complex structure that evolves as the flare evolves. Our models show that observations of the evolution of the spectrum and its polarization can provide important constraints on physical properties of the flaring environment and associated accretion event.


2020 ◽  
Author(s):  
Katrin Meier ◽  
Malte Jochmann ◽  
Martin Blumenberg ◽  
Jolanta Kus ◽  
Karsten Piepjohn ◽  
...  

<p>Paleogene rocks from Svalbard yield exceptionally high vitrinite reflectance values up to 4%. Even higher vitrinite reflectance data, along with high bitumen reflectance values, are found from Cretaceous to Paleogene rocks of the conjugated northeast Greenland margin. These rocks also contain coke. Since the distinct pattern of high thermal maturity affects both sides of the Fram Strait, it is interpreted to be caused by a heating event during a time when Greenland and Svalbard / Eurasia were still contiguous or close together. As heating overprints Paleogene sediments, we further assume that it postdates the Eocene Eurekan deformation and is related to subsequent (trans-)tensional movement leading to continental separation and eventually to the opening of the Fram Strait. The Fram Strait is the only deepwater connection of the Arctic Ocean with other oceans and is key for understanding the climatic, tectonic and paleo-oceanographic evolution of the Arctic realm. Timing and trigger mechanisms for mid- to late Miocene tectonic activity around the Fram Strait are still poorly constrained. For this study, we will test the following hypotheses using apatite fission track and apatite (U-Th-Sm)/He thermochronology: (i) Heating of the west and east side of the Fram Strait occurred simultaneously and was caused by incipient sea floor spreading in the Fram Strait; (ii) heating occurred during mid- to late Miocene in relation to uplift/exhumation and enhanced magmatic activity. Vitrinite reflectance data indicate temperatures high enough to reset low-temperature thermochronometers, thus our results will allow to date the thermal event and to investigate how it was temporarily and spatially connected to the separation of Greenland from Svalbard and thus to the opening of the northern North Atlantic Ocean and the Fram Strait. First Data will be presented.</p>


2020 ◽  
Vol 635 ◽  
pp. A168 ◽  
Author(s):  
C. D. Johnston ◽  
P. J. Cargill ◽  
A. W. Hood ◽  
I. De Moortel ◽  
S. J. Bradshaw ◽  
...  

Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion.


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Michelle L Foley ◽  
Calvin F Miller ◽  
Guilherme A R Gualda

Abstract Using a combination of petrological and geochemical approaches, we investigate processes prior to and during eruption of the Miocene supereruption of the Peach Spring Tuff (PST; Arizona–California–Nevada), including those leading to assembly and destruction of its reservoir(s). We compare the dominant high-silica rhyolite outflow of the PST with the sparsely exposed but distinctive crystal-rich trachyte capping unit, which matches intracaldera trachyte in composition, texture, and phenocryst content. The details of the diverse glass chemistry in fiamme and pumice in the capping unit, coupled with glass compositions in the rhyolite outflow and phase chemistry in general, illuminate critical aspects of chamber geometry, conditions, and processes at the onset of the supereruption. Our results are consistent with a relatively simple single-chamber reservoir for the PST where the crystal-poor, high-silica rhyolite portion directly overlies a mushy, cumulate base. Rhyolite-MELTS phase-equilibria and amphibole geobarometers indicate that the high-silica rhyolite was extracted from its cumulate mush at a depth of ∼9·5–11 km (∼260–300 MPa) and subsequently stored and crystallized at ∼7·0–8·5 km (190–230 MPa). Three types of glass are distinguishable in PST pumice: trachyte (Trg; ∼68 wt% SiO2), low-silica rhyolite (LSRg; ∼72), and high-silica rhyolite (HSRg; ∼76·5). As many as three discrete, complexly mingled glasses are present in single trachyte fiamme. Trace element concentration profiles in sanidine and plagioclase phenocrysts from both the trachyte and HSR support growth from multiple distinct melts (Trg, LSRg, and HSRg). Glasses in trachyte fiamme have zircon saturation temperatures ≥100 °C higher than HSR glasses (850–920 vs ∼770 °C) and compositions indicating dissolution of cumulate phases: very high Zr and Zr/Hf (zircon), REE (chevkinite and titanite), Ba and Sr (feldspars), and P (apatite). Dominant processes of crystal accumulation in the formation of a mushy base, followed by efficient melt extraction, led to the formation of the voluminous high-silica rhyolite melt-rich body overlying a residual cumulate of trachytic composition. This was followed by heating, partial dissolution, and remobilization of the basal cumulate. This history is reflected in the contrasts that are evident in the PST (elemental compositions of pumice, phenocrysts, and glasses; crystal-fraction; temperatures). Reheating was presumably a result of injection of hot mafic magma, but isotopic uniformity of trachyte and rhyolite indicates minimal chemical interaction with this magma. Variability in dissolution textures in phenocrysts in the trachyte, revealed by resorbed and embayed shapes, and the large range of glass trace element concentrations, together with variable temperatures recorded in glasses by zircon and apatite saturation thermometry, suggest that heat transfer from the hotter rejuvenating magma was unevenly distributed. The late-stage heating event probably contributed to the onset of eruption, providing the thermal energy necessary to reduce the crystal fraction within the cumulate below the mechanical lock point. We estimate ∼50 % of the original cumulate phenocrysts dissolved before eruption, using Rhyolite-MELTS and trace element modeling. Sharp contacts with micron-scale compositional gradients between contrasting glass types in individual trachyte fiamme suggest that juxtaposition of contrasting magmas from different parts of the reservoir occurred during eruption.


Sign in / Sign up

Export Citation Format

Share Document