2009 Release of offshore petroleum exploration acreage

2009 ◽  
Vol 49 (1) ◽  
pp. 463
Author(s):  
John Hartwell

John Hartwell is Head of the Resources Division in the Department of Resources, Energy and Tourism, Canberra Australia. The Resources Division provides advice to the Australian Government on policy issues, legislative changes and administrative matters related to the petroleum industry, upstream and downstream and the coal and minerals industries. In addition to his divisional responsibilities, he is the Australian Commissioner for the Australia/East Timor Joint Petroleum Development Area and Chairman of the National Oil and Gas Safety Advisory Committee. He also chairs two of the taskforces, Clean Fossil Energy and Aluminium, under the Asia Pacific Partnership for Clean Development and Climate (AP6). He serves on two industry and government leadership groups delivering reports to the Australian Government, strategies for the oil and gas industry and framework for the uranium industry. More recently he led a team charged with responsibility for taking forward the Australian Government’s proposal to establish a global carbon capture and storage institute. He is involved in the implementation of a range of resource related initiatives under the Government’s Industry Action Agenda process, including mining and technology services, minerals exploration and light metals. Previously he served as Deputy Chairman of the Snowy Mountains Council and the Commonwealth representative to the Natural Gas Pipelines Advisory Committee. He has occupied a wide range of positions in the Australian Government dealing with trade, commodity, and energy and resource issues. He has worked in Treasury, the Department of Trade, Department of Foreign Affairs and Trade and the Department of Primary Industries and Energy before the Department of Industry, Science and Resources. From 1992–96 he was a Minister Counsellor in the Australian Embassy, Washington, with responsibility for agriculture and resource issues and also served in the Australian High Commission, London (1981–84) as the Counsellor/senior trade relations officer. He holds a MComm in economics, and Honours in economics from the University of New South Wales, Australia. Prior to joining the Australian Government, worked as a bank economist. He was awarded a public service medal in 2005 for his work on resources issues for the Australian Government.

2017 ◽  
Vol 57 (2) ◽  
pp. 413
Author(s):  
Christopher Consoli ◽  
Alex Zapantis ◽  
Peter Grubnic ◽  
Lawrence Irlam

In 1972, carbon dioxide (CO2) began to be captured from natural gas processing plants in West Texas and transported via pipeline for enhanced oil recovery (EOR) to oil fields also in Texas. This marked the beginning of carbon capture and storage (CCS) using anthropogenic CO2. Today, there are 22 such large-scale CCS facilities in operation or under construction around the world. These 22 facilities span a wide range of capture technologies and source feedstock as well as a variety of geologic formations and terrains. Seventeen of the facilities capture CO2 primarily for EOR. However, there are also several significant-scale CCS projects using dedicated geological storage options. This paper presents a collation and summary of these projects. Moving forward, if international climate targets and aspirations are to be achieved, CCS will increasingly need to be applied to all high emission industries. In addition to climate change objectives, the fundamentals of energy demand and fossil fuel supply strongly suggests that CCS deployment will need to be rapid and global. The oil and gas sector would be expected to be part of this deployment. Indeed, the oil and gas industry has led the deployment of CCS and this paper explores the future of CCS in this industry.


2021 ◽  
Vol 14 (4) ◽  
pp. 369-374
Author(s):  
O. I. Kalinskiy ◽  
M. A. Afonasiev

The authors study oil and gas industry, its condition and perspective trends of industrial development. One of them involves applying low carbon and low cost technologies. The authors introduce new strategic imperatives in oil and gas sector to perform energy transition. They study the types of categories of perspective trends of the industry’s development: scaling up the development and implementation of a carbon capture and storage system, using low carbon raw materials, making it possible to take granular measurements. The article deals with perspectives of the oil and gas industry for the current year. The perspectives are built with the consideration of the previous year’s indicators and include all the past disasters and the dynamics of their solution and the results for the society. The authors show wider implementation of drones used for abnormal emissions of hydrogen sulfide to carry out distant monitoring, observations, inspections and preventive maintenance, change tracking, methane management, emergency response and material processing. The article describes precision drilling which reduces the risk of accidents, oil spills, fires and increases rate of penetration. The authors present microwave hydraulic fracturing which can become the next significant achievement in the perspective development of the industry.


Author(s):  
M. Chukunedum Onojake ◽  
T. Angela Waka

The petroleum industry includes the global processes of exploration, extraction, refining, transportation and marketing of natural gas, crude oil and refined petroleum products. The oil industry demands more sophisticated methods for the exploitation of petroleum. As a result, the use of oil field chemicals is becoming increasingly important and has received much attention in recent years due to the vast role they play in the recovery of hydrocarbons which has enormous  commercial benefits. The three main sectors of the petroleum industry are Upstream, Midstream and Downstream. The Upstream deals with exploration and the subsequent production (drilling of exploration wells to recover oil and gas). In the Midstream sector, petroleum produced is transported through pipelines as natural gas, crude oil, and natural gas liquids. Downstream sector is basically involved in the processing of the raw materials obtained from the Upstream sector. The operations comprises of refining of crude oil, processing and purifying of natural gas. Oil field chemicals offers exceptional applications in these sectors with wide range of applications in operations such as improved oil recovery, drilling optimization, corrosion protection, mud loss prevention, drilling fluid stabilization in high pressure and high temperature environment, and many others. Application of a wide range of oilfield chemicals is therefore essential to rectify issues and concerns which may arise from oil and gas operational activities. This review intends to highlight some of the oil field chemicals and  their positive applications in the oil and gas Industries.


2020 ◽  
Vol 60 (2) ◽  
pp. 761
Author(s):  
Sergey Shevchenko

The seismic method has been thriving in the oil and gas industry for decades. Technological progress in acquisition, processing and interpretation have made it practically the only geophysical method used for petroleum exploration. Unfortunately, gravity, as a pioneering geophysical method appears to have been completely forgotten in Australia’s oil and gas industry. Most of the gravity data in Australia were collected in the 1960s and 1970s. Only government agencies and a few exploration companies have conducted gravity surveys in petroleum basins since that time. Australia’s mostly flat terrain, economical aspects of the gravity method such as low cost and the ability to cover vast underexplored onshore basins in the country, all seem to be positive factors indicating that this method should be commonly used as a part of petroleum exploration. Given the petroleum industry is currently trying hard to make exploration more economically effective, this may be an opportunity to revive the gravity method in petroleum exploration.


2018 ◽  
Vol 58 (2) ◽  
pp. 633 ◽  
Author(s):  
Shiva Tyagi

The task force on climate-related financial disclosures (TCFD) published its recommendations for disclosing climate-related risks in June 2017. The TCFD report represents a framework for companies to disclose climate-related information consistently in their mainstream financial filings. Reporting financial activity using the lens of climate-related risk would, according to the TCFD, help more appropriately price risks and allocate capital in the context of climate change. The initiative, while voluntary, would help speed the transition to a low-carbon economy, and help shift the corporate perspective beyond immediate concerns. The oil and gas industry can play a leading role in the transition to a low carbon economy through: carbon capture and storage, use of natural gas as a transition fuel and the implementation of large-scale renewable energy projects. Given the oil and gas industry’s global leadership in petroleum geology, resource extraction and pipeline transmission, the industry has a vital role in testing the feasibility of large-scale carbon capture and storage. Fossil fuels and renewable energy technologies have obvious complementary synergies and fossil fuels like natural gas are necessary for the reliable, affordable and low-cost transition to a low carbon transition pathway. The oil and gas industry may be the only sector with the requisite expertise and global scale of operations to test and implement large-scale renewable technology initiatives within a public-private partnership framework. Moreover, oil and gas companies are well positioned to be leaders in the effort to adapt and strengthen resilience to the effects and risks of climate change and reduce impacts.


Author(s):  
Frances C Harding ◽  
Alan T James ◽  
Hazel E Robertson

The permanent underground storage of large quantities of anthropogenic carbon dioxide from thermal energy and industrial plant is widely recognised as a fundamental tool which can help to avoid the worst impacts of climate change. To achieve this effectiveness, it will require widespread global deployment in a new industry which would rival the current oil and gas industry in its scale and ambition. Many of the technologies for carbon dioxide storage are the adaptations of oil and gas technology, but there are some important differences. These arise from:  1. the thermodynamic properties of carbon dioxide,  2. the essential requirement for long-term storage site integrity,  3. the absence of an established and mature business model for the industry and  4. the contrasting regulatory environments between carbon capture and storage and oil and gas extraction. Whilst the underground injection of carbon dioxide can truly be considered a proven technology, there are a range of engineering challenges to achieve this in a safe and cost effective manner. This paper sets out to explore some of these challenges and concludes with a view of what next steps are required to progress carbon dioxide storage effectively within the UK.  • The challenges of injecting carbon dioxide into offshore subsurface reservoirs:    ^ Arrival processing (heating before injection)    ^ Injectivity assessment – how many wells?    ^ Platform or subsea?    ^ Well design for long service operations and monitoring  • The challenges of forecasting reservoir and injection performance within porous and permeable storage reservoirs:    ^ Issues influencing carbon dioxide storage capacity    ^ Assuring storage site containment integrity    ^ Geology and engineering – uncertainty and risk  • Where has the industry got to and what are the practical next steps?


Geophysics ◽  
1953 ◽  
Vol 18 (1) ◽  
pp. 201-211 ◽  
Author(s):  
John R. Killough

Exploration for oil and gas has soared to an all time maximum, and it will continue to increase. In eleven western states such exploration will be predominantly on our public lands. These lands are managed to (1) conserve and perpetuate natural resources, (2) give greatest good to the greatest number, and (3) have the benefits exceed the cost. The conservation program of the Bureau of Land Management is engaged in the construction of soil and moisture conservation projects, range improvements, and revegetation. At the present time the Bureau is actively engaged in controlling the poisonous invader Halogeton, employing herbicides and reseeding. Seismic methods, as often employed, may be destructive to soil and vegetation or surface resources and therefore opposed to other activities and interests. Direct losses occur through improperly bulldozed trails and the use of stockwater reservoirs. Shot holes left unplugged are dangerous. The oil and gas industry must develop conservation policies within its own ranks. Roads may be properly constructed and damage repaired. The petroleum industry must decide by its own actions its future place on our public domain.


2021 ◽  
Vol 61 (2) ◽  
pp. 402
Author(s):  
Nick Harley

Carbon capture and storage (CCS) is essential for meeting the Paris agreement global emissions targets – all identified pathways to net zero 2050 emissions require large scale deployment of CCS. The Moomba CCS project is an example of the type of projects that the oil and gas industry can undertake in Australia and globally to reduce emissions and create new business opportunities. The project is a CO2 capture, transport and storage project in the Cooper Basin with the aim of delivering material emissions reduction of 1.7 mtpa CO2-e. The project utilises existing and new infrastructure as well as depleted hydrocarbon fields to capture, compress, dehydrate and store CO2 that is currently vented. This study will provide an overview of this project including the technical challenges that were overcome to enable project success.


Author(s):  
Ully Zakyatul Husna ◽  
Khaled Abdalla Elraies ◽  
Juhairi Aris B. M. Shuhili ◽  
Ahmed Abdulla Elryes

AbstractScale formation is one of the major issues in the petroleum industry. The development of these scale layers could result in production losses and equipment instability because of pipeline blockage, energy leakage, corrosion acceleration and severe accidents which will impact the safety of the production process. The utilization of chemical scale inhibitors (SIs) is considered an economical and successful route for the scale prevention. Two main components of the chemical SIs are phosphonate and polymer. Many of the phosphorous compounds are toxic and very expensive. Besides, portions of the phosphonate compounds are thermally less stable than polymeric scale inhibitors in a harsh environment of high temperature and high pressure (HTHP). This is considered as an issue as a good scale inhibitor should be able to be applied under wide range of temperature and pressure. Therefore, the continuous development in petroleum production imposes the need to develop a novel phosphorus-free scale inhibitor. Meanwhile, polymers have been broadly applied as a scale inhibitor in oil and gas fields because of their enhanced thermal stability and improved environmental compatibility. Polymeric scale inhibitors also show better dispersing efficiency. Today, the biopolymers have pulled in a tremendous consideration from the industry to replace the utilization of synthetic polymer due to their interesting qualities such as their lightness, strong mechanical properties, and appealing functionality. Biopolymers are insensitive toward brine salinity yet are vulnerable to biological degradation. Specifically, these polymers present enormous potential for environmental application because of their biodegradability, chemical adaptability and reactivity, biocompatibility, and nontoxicity. Recently, several new eco-friendly scale inhibitors have been reported in the literature. Hence, this paper provides a review of the utilization of biopolymer as scale inhibitor in the application of oil and gas industry under laboratory approach or field trial application. The types of scales, chemical scale inhibitors (SIs) and biopolymers are likewise reviewed here. The presented work in this paper is expected to enhance the fundamental understanding of scale formation, as well as contribute to the development process of biopolymer scale inhibitors.


Sign in / Sign up

Export Citation Format

Share Document