The engineering challenges of CO2 storage

Author(s):  
Frances C Harding ◽  
Alan T James ◽  
Hazel E Robertson

The permanent underground storage of large quantities of anthropogenic carbon dioxide from thermal energy and industrial plant is widely recognised as a fundamental tool which can help to avoid the worst impacts of climate change. To achieve this effectiveness, it will require widespread global deployment in a new industry which would rival the current oil and gas industry in its scale and ambition. Many of the technologies for carbon dioxide storage are the adaptations of oil and gas technology, but there are some important differences. These arise from:  1. the thermodynamic properties of carbon dioxide,  2. the essential requirement for long-term storage site integrity,  3. the absence of an established and mature business model for the industry and  4. the contrasting regulatory environments between carbon capture and storage and oil and gas extraction. Whilst the underground injection of carbon dioxide can truly be considered a proven technology, there are a range of engineering challenges to achieve this in a safe and cost effective manner. This paper sets out to explore some of these challenges and concludes with a view of what next steps are required to progress carbon dioxide storage effectively within the UK.  • The challenges of injecting carbon dioxide into offshore subsurface reservoirs:    ^ Arrival processing (heating before injection)    ^ Injectivity assessment – how many wells?    ^ Platform or subsea?    ^ Well design for long service operations and monitoring  • The challenges of forecasting reservoir and injection performance within porous and permeable storage reservoirs:    ^ Issues influencing carbon dioxide storage capacity    ^ Assuring storage site containment integrity    ^ Geology and engineering – uncertainty and risk  • Where has the industry got to and what are the practical next steps?

2020 ◽  
Vol 52 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Jon G. Gluyas ◽  
Usman Bagudu

AbstractThe Endurance, four-way, dip-closed structure in UK Blocks 42/25 and 43/21 occurs over a salt swell diapir and within Triassic and younger strata. The Lower Triassic Bunter Sandstone Formation reservoir within the structure was tested twice for natural gas (in 1970 and 1990) but both wells were dry. The reservoir is both thick and high quality and, as such, an excellent candidate site for subsurface CO2 storage.In 2013 a consortium led by National Grid Carbon drilled an appraisal well on the structure and undertook an injection test ahead of a planned development of Endurance as the first bespoke storage site on the UK Continental Shelf with an expected injection rate of 2.68 × 106 t of dense phase CO2 each year for 20 years. The site was not developed following the UK Government's removal of financial support for carbon capture and storage (CCS) demonstration projects, but it is hoped with the recent March 2020 Budget that government support for CCS may now be back on track.


2021 ◽  
Vol 14 (4) ◽  
pp. 369-374
Author(s):  
O. I. Kalinskiy ◽  
M. A. Afonasiev

The authors study oil and gas industry, its condition and perspective trends of industrial development. One of them involves applying low carbon and low cost technologies. The authors introduce new strategic imperatives in oil and gas sector to perform energy transition. They study the types of categories of perspective trends of the industry’s development: scaling up the development and implementation of a carbon capture and storage system, using low carbon raw materials, making it possible to take granular measurements. The article deals with perspectives of the oil and gas industry for the current year. The perspectives are built with the consideration of the previous year’s indicators and include all the past disasters and the dynamics of their solution and the results for the society. The authors show wider implementation of drones used for abnormal emissions of hydrogen sulfide to carry out distant monitoring, observations, inspections and preventive maintenance, change tracking, methane management, emergency response and material processing. The article describes precision drilling which reduces the risk of accidents, oil spills, fires and increases rate of penetration. The authors present microwave hydraulic fracturing which can become the next significant achievement in the perspective development of the industry.


2019 ◽  
Vol 59 (2) ◽  
pp. 565
Author(s):  
Aaron De Fina ◽  
Marc Chable ◽  
Cameron Wills

The CO2CRC Otway Project continues to demonstrate that carbon capture and storage is a viable option for CO2 mitigation. The CO2CRC Otway Project is Australia’s first CO2 demonstration project, with two projects completed, involving geological storage of some 80000 tonnes of CO2 over the past 10 years. The project was initially authorised for a single stage with a finite life, but the growing requirements of the global carbon capture and storage community required further research on carbon capture and storage technologies and behaviour (via Stages 2 and 3), and so the project was extended. CO2CRC has undertaken 360-degree stakeholder engagement processes throughout the project, regularly consulting with regulators, governments, industry, partners, researchers and the community. This has been especially important as the project changed, operating in a niche space between Victorian environment, petroleum and water Acts. This process has allowed CO2CRC to contribute to alignment efforts within regulatory bodies, to enhance regulations to cover project activities, ensuring best practices are documented and observed to the satisfaction of the regulators and wider community. The Otway Basin in south-west Victoria is a region not immune to broader community concerns regarding the oil and gas and other industries. The surrounding area is predominately dairy farming, with locals relying heavily on the aquifers beneath their land. Although such a backdrop suggests potentially high levels of concern and scrutiny, especially when projects necessitate drilling or other invasive activities, the project has maintained strong local stakeholder engagement and support due to ongoing implementation and evaluation of the stakeholder management processes.


2015 ◽  
Vol 55 (2) ◽  
pp. 472
Author(s):  
Linda Stalker ◽  
Dominique Van Gent ◽  
Sandeep Sharma ◽  
Martin Burke

The South West Hub Carbon Capture and Storage Project (SWH), managed by the WA Department of Mines and Petroleum (WA DMP), is evaluating the potential for a commercial-scale carbon storage site near major emissions sites in southwest WA. The area under investigation is in the southern Perth Basin, focusing on a 150 km2 area in the shires of Harvey and Waroona. WA DMP is conducting a major feasibility study and collecting pre-competitive data in partnership with the local community. The activities are done in a stage-gate model to obtain relevant information on the potential storage capacity, containment security and injectivity of the geology. Following a smaller 2D seismic survey and the drilling of the Harvey–1 stratigraphic well, a more complex 3D seismic survey was undertaken in February to March, 2014. These activities have confirmed the potential for commercial-scale CO2 storage. A new work package has been initiated with the drilling of three wells (Harvey–2, –3 and –4) underway and plans to drill a fifth well in the next 12 months. The stage-gate approach has been cost-effective, resulting in a carefully planned data acquisition and research program. The approach allows new results, information and potential future activities to be rolled out to stakeholders and the community in the area.


2017 ◽  
Vol 57 (2) ◽  
pp. 413
Author(s):  
Christopher Consoli ◽  
Alex Zapantis ◽  
Peter Grubnic ◽  
Lawrence Irlam

In 1972, carbon dioxide (CO2) began to be captured from natural gas processing plants in West Texas and transported via pipeline for enhanced oil recovery (EOR) to oil fields also in Texas. This marked the beginning of carbon capture and storage (CCS) using anthropogenic CO2. Today, there are 22 such large-scale CCS facilities in operation or under construction around the world. These 22 facilities span a wide range of capture technologies and source feedstock as well as a variety of geologic formations and terrains. Seventeen of the facilities capture CO2 primarily for EOR. However, there are also several significant-scale CCS projects using dedicated geological storage options. This paper presents a collation and summary of these projects. Moving forward, if international climate targets and aspirations are to be achieved, CCS will increasingly need to be applied to all high emission industries. In addition to climate change objectives, the fundamentals of energy demand and fossil fuel supply strongly suggests that CCS deployment will need to be rapid and global. The oil and gas sector would be expected to be part of this deployment. Indeed, the oil and gas industry has led the deployment of CCS and this paper explores the future of CCS in this industry.


Author(s):  
Naimish Agarwal

Abstract: More than ever, the fate of anthropogenic CO2 emissions is in our hands. Since the advent of industrialization, there has been an increase in the use of fossil fuels to fulfil rising energy demands. The usage of such fuels results in the release of carbon dioxide (CO2) and other greenhouse gases, which result in increased temperature. Such warming is extremely harmful to life on Earth. The development of technology to counter the climate change and spreading it for widespread adoptions. We need to establish a framework to provide overarching guidance for the well-functioning of technology and mechanism development of Carbon Capture and Storage. Carbon capture and storage (CCS) is widely regarded as a critical approach for achieving the desired CO2 emission reduction. Various elements of CCS, such as state-of-the-art technology for CO2 collection, separation, transport, storage, politics, opportunities, and innovations, are examined and explored in this paper. Carbon capture and storage is the process of capturing and storing carbon dioxide (CO2) before it is discharged into the environment (CCS). The technology can capture high amounts of CO2 produced by fossil fuel combustion in power plants and industrial processes. CO2 is compressed and transferred by pipeline, ship, or road tanker once it has been captured. CO2 can then be piped underground, usually to depths of 1km or more, and stored in depleted oil and gas reservoirs, coalbeds, or deep saline aquifers, depending on the geology. CO2 could also be used to produce commercially marketable products. With the goal of keeping world average temperatures below 1.5°C (2.7°F) and preventing global average temperature rises of more than 2°C (3.6°F) over pre-industrial levels, CCS model should be our priority to be implemented with the proper economical map


2009 ◽  
Vol 49 (1) ◽  
pp. 463
Author(s):  
John Hartwell

John Hartwell is Head of the Resources Division in the Department of Resources, Energy and Tourism, Canberra Australia. The Resources Division provides advice to the Australian Government on policy issues, legislative changes and administrative matters related to the petroleum industry, upstream and downstream and the coal and minerals industries. In addition to his divisional responsibilities, he is the Australian Commissioner for the Australia/East Timor Joint Petroleum Development Area and Chairman of the National Oil and Gas Safety Advisory Committee. He also chairs two of the taskforces, Clean Fossil Energy and Aluminium, under the Asia Pacific Partnership for Clean Development and Climate (AP6). He serves on two industry and government leadership groups delivering reports to the Australian Government, strategies for the oil and gas industry and framework for the uranium industry. More recently he led a team charged with responsibility for taking forward the Australian Government’s proposal to establish a global carbon capture and storage institute. He is involved in the implementation of a range of resource related initiatives under the Government’s Industry Action Agenda process, including mining and technology services, minerals exploration and light metals. Previously he served as Deputy Chairman of the Snowy Mountains Council and the Commonwealth representative to the Natural Gas Pipelines Advisory Committee. He has occupied a wide range of positions in the Australian Government dealing with trade, commodity, and energy and resource issues. He has worked in Treasury, the Department of Trade, Department of Foreign Affairs and Trade and the Department of Primary Industries and Energy before the Department of Industry, Science and Resources. From 1992–96 he was a Minister Counsellor in the Australian Embassy, Washington, with responsibility for agriculture and resource issues and also served in the Australian High Commission, London (1981–84) as the Counsellor/senior trade relations officer. He holds a MComm in economics, and Honours in economics from the University of New South Wales, Australia. Prior to joining the Australian Government, worked as a bank economist. He was awarded a public service medal in 2005 for his work on resources issues for the Australian Government.


Sign in / Sign up

Export Citation Format

Share Document