Demonstrating good practice in the safe operation of gas assets with predictive analytics

2017 ◽  
Vol 57 (2) ◽  
pp. 437
Author(s):  
Hennie Engelbrecht ◽  
Nesa Abbaspour

The oil and gas industry operates large and complex facilities. Technical integrity (and thus licence to operate) must be maintained through routine inspection and maintenance regimes. Corrosion attacks every component at every stage in the life of every oil and gas field or plant (Schlumberger 1994). Globally, corrosion management accounts for US2.5Tr cross-industry spend (NACE International 2016). Risk-based approaches for internal corrosion based on susceptibility of a process item to corrode, have been utilised to assist with identifying appropriate and more cost-effective maintenance and inspection strategies. The aim of such approaches is to protect integrity and not compromise safety; however, they do nothing to minimise regret cost. These approaches use only known physical characteristics of piping equipment and rely on repeat inspection data to calculate corrosion rates and associated maintenance schedules. The present paper will leverage the challenges and shortcomings of using existing risk-based inspection (RBI) approaches and demonstrate how Accenture in collaboration with Woodside and others is utilising predictive analytics to more accurately determine likelihood of corrosion to exist in a more granular resolution, thus managing likelihood and consequence of corrosion to produce an improved risk-based model. The analytics model considers physical, geospatial and external factors for external corrosion. This is a work in progress, with very promising initial results, that leads into the implementation of an improved RBI strategy, enabling Woodside to reduce inspection scope, physical site activity and associated management cost. In addition, it better manages plant risk in conjunction with smart visualisation tools.

2021 ◽  
Vol 19 (3) ◽  
pp. 848-853
Author(s):  
Liliya Saychenko ◽  
Radharkrishnan Karantharath

To date, the development of the oil and gas industry can be characterized by a decline in the efficiency of the development of hydrocarbon deposits. High water cut-off is often caused by water breaking through a highly permeable reservoir interval, which often leads to the shutdown of wells due to the unprofitability of their further operation. In this paper, the application of straightening the profile log technology for injection wells of the Muravlenkovsky oil and gas field is justified. In the course of this work, the results of field studies are systematized. The reasons for water breakthrough were determined, and the main ways of filtration of the injected water were identified using tracer surveys. The use of CL-systems technology based on polyacrylamide and chromium acetate is recommended. The forecast of the estimated additional oil produced was made.


2021 ◽  
Author(s):  
Kumar Nathan ◽  
M Arif Iskandar Ghazali ◽  
M Zahin Abdul Razak ◽  
Ismanto Marsidi ◽  
Jamari M Shah

Abstract Abandonment is considered to be the last stage in the oil gas field cycle. Oil and gas industries around the world are bounded by the necessity of creating an abandonment program which is technically sound, complied to the stringent HSE requirement and to be cost-effective. Abandonment strategies were always planned as early as during the field development plan. When there are no remaining opportunities left or no commercially viable hydrocarbon is present, the field need to be abandoned to save operating and maintenance cost. The cost associated on abandonment can often be paid to the host government periodically and can be cost recoverable once the field is ready to be abandoned. In Malaysia, some of the oil producing fields are now in the late life of production thus abandonment strategies are being studied comprehensively. The interest of this paper is to share the case study of one of a field that is in its late life of production and has wells and facilities that planned to be abandon soon. The abandonment in this field is challenging because it involves two countries, as this field is in the hydrocarbon structure that straddling two countries. Series of techno-commercial discussion were held between operators of these two countries to gain an integrated understanding of the opportunity, defining a successful outcome of the opportunity and creating an aligned plan to achieve successful abandonment campaign. Thus, this paper will discuss on technical aspects of creating a caprock model, the execution strategies of abandoning the wells and facilities and economic analysis to study whether a joint campaign between the operators from two countries yields significantly lower costs or otherwise.


2021 ◽  
Author(s):  
Aamir Lokhandwala ◽  
Vaibhav Joshi ◽  
Ankit Dutt

Abstract Hydraulic fracturing is a widespread well stimulation treatment in the oil and gas industry. It is particularly prevalent in shale gas fields, where virtually all production can be attributed to the practice of fracturing. It is also used in the context of tight oil and gas reservoirs, for example in deep-water scenarios where the cost of drilling and completion is very high; well productivity, which is dictated by hydraulic fractures, is vital. The correct modeling in reservoir simulation can be critical in such settings because hydraulic fracturing can dramatically change the flow dynamics of a reservoir. What presents a challenge in flow simulation due to hydraulic fractures is that they introduce effects that operate on a different length and time scale than the usual dynamics of a reservoir. Capturing these effects and utilizing them to advantage can be critical for any operator in context of a field development plan for any unconventional or tight field. This paper focuses on a study that was undertaken to compare different methods of simulating hydraulic fractures to formulate a field development plan for a tight gas field. To maintaing the confidentiality of data and to showcase only the technical aspect of the workflow, we will refer to the asset as Field A in subsequent sections of this paper. Field A is a low permeability (0.01md-0.1md), tight (8% to 12% porosity) gas-condensate (API ~51deg and CGR~65 stb/mmscf) reservoir at ~3000m depth. Being structurally complex, it has a large number of erosional features and pinch-outs. The study involved comparing analytical fracture modeling, explicit modeling using local grid refinements, tartan gridding, pseudo-well connection approach and full-field unconventional fracture modeling. The result of the study was to use, for the first time for Field A, a system of generating pseudo well connections to simulate hydraulic fractures. The approach was found to be efficient both terms of replicating field data for a 10 year period while drastically reducing simulation runtime for the subsequent 10 year-period too. It helped the subsurface team to test multiple scenarios in a limited time-frame leading to improved project management.


1988 ◽  
Vol 6 (4-5) ◽  
pp. 317-322
Author(s):  
A.F. Grove

The characteristics of good energy company borrowers are strong management, integrity, diversification, flexibility, a sound financial basis and business acumen. Acceptable reasons for borrowing include requirements for working capital, plant expansion, modernisation, oil and gas field development and the manufacturing of oil tools and related products. Security for loans is based on the company's reserves, the duration of the debt and priority over other indebtedness. Most loans are evaluated on the grounds of general corporate credit, that is, the overall credit standing of the borrower.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
M. K. F. M. Ali ◽  
N. Md. Noor ◽  
N. Yahaya ◽  
A. A. Bakar ◽  
M. Ismail

Pipelines play an extremely important role in the transportation of gases and liquids over long distance throughout the world. Internal corrosion due to microbiologically influenced corrosion (MIC) is one of the major integrity problems in oil and gas industry and is responsible for most of the internal corrosion in transportation pipelines. The presence of microorganisms such as sulfate reducing bacteria (SRB) in pipeline system has raised deep concern within the oil and gas industry. Biocide treatment and cathodic protection are commonly used to control MIC. However, the solution is too expensive and may create environmental problems by being too corrosive. Recently, Ultraviolet (UV) as one of the benign techniques to enhance mitigation of MIC risk in pipeline system has gained interest among researchers. An amount of 100 ml of modified Baar’s medium and 5 ml of Desulfovibrio vulgaris (strain 7577) seeds was grown in 125 ml anaerobic vials with carbon steel grade API 5L-X70 coupons at the optimum temperature of 37°C and pH 9.5 for fifteen days. This was then followed by exposing the medium to UV for one hour. Results from present study showed that UV radiation has the ability to disinfect bacteria, hence minimizing the risk of metal loss due to corrosion in steel pipeline. 


2015 ◽  
Vol 55 (2) ◽  
pp. 490
Author(s):  
Adam Davis

Despite debate, the fact remains that the climate is changing. When considering the factors that determine potential financial impacts and losses that upstream oil and gas business could suffer due to a changing climate, the issues may primarily appear to be related to weather and geography. On closer examination, the factors that determine the severity of the impacts and losses are largely determined by the design and interdependencies of the financial and economic mechanisms of risk management. There is an increasing consensus in the insurance industry that the challenge presented by climate change, along with the increasing power of climate models, will result in far-reaching changes to the presently accepted practices of risk transfer. This extended abstract describes the increased power of climate models and the improved understanding of the present levels of under-adaptation when viewed from the position of investors in large-scale and long-lived oil and gas assets in Australia. It then looks at risk transfer models and examines potential limitations that have been identified due to the focus on ad-hoc post-disaster recovery when compared to a cost-effective pre-disaster resilience approach. The extended abstract then discusses how changes in the risk transfer approach could affect the financial aspects of an oil and gas business, such as the cost of borrowing, self-insurance, capital allocation and planning.


SPE Journal ◽  
2015 ◽  
Vol 20 (06) ◽  
pp. 1254-1260 ◽  
Author(s):  
Arnold Janson ◽  
Ana Santos ◽  
Altaf Hussain ◽  
Simon Judd ◽  
Ana Soares ◽  
...  

Summary With proper treatment to remove organics and inorganics, one can use the produced water (PW) generated during oil-and-gas extraction as process water. Biotreatment is generally regarded as the most cost-effective method for organics removal, and although widely used in industrial wastewater treatment, PW biotreatment installations are limited. This paper follows up to an earlier paper published in the SPE Journal (Janson et al. 2014). Although the earlier paper assessed the biotreatability of PW from a Qatari gas field from the summer season, this paper focuses on assessing the biotreatability of PW during the winter season [i.e., containing the thermodynamic hydrate inhibitor monoethylene glycol (MEG) and a kinetic hydrate inhibitor (KHI)]. Tests were conducted in batch and continuous reactors under aerobic mixed-culture conditions without pH control during 31 weeks. The results indicated that one could remove >80% of the chemical oxygen demand (COD) and total organic carbon (TOC) through biological treatment of PW with 1.5% MEG added. In contrast, biotreatment can remove only ≈43% of COD and TOC present in PW when 1.5% KHI was added as a hydrate inhibitor; 2-butoxyethanol, a solvent in KHI, is extremely biodegradable; it was reduced in concentration from >5000 to <10 mg/L by biotreatment; the KHI polymer though was only partially biodegradable. Cloudpoint tests conducted on PW with 1.5% KHI added showed only an 8°C increase in cloudpoint temperature (from 35 to 43°C). The target cloudpoint temperature of >60°C was not achieved. Although the feed to the reactors (PW with either KHI or MEG) was at pH 4.5, the reactors stabilized at a pH of 2.6, considered extremely acidic for aerobic bioactivity. The successful operation of an aerobic biological process for an extended period of time at a pH of 2.6 was unexpected, and published reports of bioactivity at that pH are limited. After extensive analytical tests, it was concluded that the pH decrease was caused by the production of an inorganic acid. A mechanism by which hydrochloric acid could be produced biologically was proposed; however, further research in this area by the academic community is recommended.


Author(s):  
Yandong Zhou ◽  
Facheng Wang

Fixed platform have been widely employed in the offshore oil and gas reservoirs development. Pile foundation reliability is critical for these platforms where drilling, production and other functions are integrated. The lifting operation for the long pile, being a key step in the jacket installation, has been considered for further developments. With deep water developments, the sizes and weights of long piles are reasonably bigger. The corresponding process and equipment employed are subsequently altered, which brings challenges to developing a cost-effective, easy-operable approach for lifting operation. In this paper, the technology for the offshore long pile upending lifting operation including pile feature, installation methodology, lifting rigging and analysis model, covering water depths ranging from shallow to near deep water zone (60–300 m water depth) has been suggested. In addition, the applicability of the adoptable novel approaches has been discussed considering the practical project experience.


Sign in / Sign up

Export Citation Format

Share Document