scholarly journals Application of the CL-systems technology for water injection wells at an oil and gas field

2021 ◽  
Vol 19 (3) ◽  
pp. 848-853
Author(s):  
Liliya Saychenko ◽  
Radharkrishnan Karantharath

To date, the development of the oil and gas industry can be characterized by a decline in the efficiency of the development of hydrocarbon deposits. High water cut-off is often caused by water breaking through a highly permeable reservoir interval, which often leads to the shutdown of wells due to the unprofitability of their further operation. In this paper, the application of straightening the profile log technology for injection wells of the Muravlenkovsky oil and gas field is justified. In the course of this work, the results of field studies are systematized. The reasons for water breakthrough were determined, and the main ways of filtration of the injected water were identified using tracer surveys. The use of CL-systems technology based on polyacrylamide and chromium acetate is recommended. The forecast of the estimated additional oil produced was made.

2021 ◽  
Vol 19 (3) ◽  
pp. 847-852
Author(s):  
Liliya Saychenko ◽  
Radharkrishnan Karantharath

To date, the development of the oil and gas industry can be characterized by a decline in the efficiency of the development of hydrocarbon deposits. High water cut-off is often caused by water breaking through a highly permeable reservoir interval, which often leads to the shutdown of wells due to the unprofitability of their further operation. In this paper, the application of straightening the profile log technology for injection wells of the Muravlenkovsky oil and gas field is justified. In the course of this work, the results of field studies are systematized. The reasons for water breakthrough were determined, and the main ways of filtration of the injected water were identified using tracer surveys. The use of CL-systems technology based on polyacrylamide and chromium acetate is recommended. The forecast of the estimated additional oil produced was made.


1988 ◽  
Vol 6 (4-5) ◽  
pp. 317-322
Author(s):  
A.F. Grove

The characteristics of good energy company borrowers are strong management, integrity, diversification, flexibility, a sound financial basis and business acumen. Acceptable reasons for borrowing include requirements for working capital, plant expansion, modernisation, oil and gas field development and the manufacturing of oil tools and related products. Security for loans is based on the company's reserves, the duration of the debt and priority over other indebtedness. Most loans are evaluated on the grounds of general corporate credit, that is, the overall credit standing of the borrower.


2021 ◽  
Vol 1 (1) ◽  
pp. 549-558
Author(s):  
Juwairiah Juwairiah ◽  
Didik Indarwanta ◽  
Frans Richard Kodong

The oil and gas sector is an important factor in sustainable development, so it is considered necessary to make serious changes in conducting economic analysis on the oil and gas business. Oil and gas industry activities consist of upstream activities, and downstream activities. Activities in these upstream and downstream operations have high risk, high costs and high technology, so the company continuously tries to reduce the importance of the adverse impact of these risks on the work environment and people. Thus, evaluating the factors that affect sustainable production in this sector becomes a necessity. In this research will be evaluated the economy of the oil and gas field using methods of economic indicators, among others; NPV, POT, ROR, where these factors are estimated in order to be able to estimate the prospects of the oil and gas field so that the decision that the field development project can be implemented or cannot be taken immediately. Implementation of oil and gas field economic evaluation in this study using Macro VBA Excel. From several methods of economic analysis obtained that the results of this study show high precision compared to other methods, in addition to the way of evaluation using the above economic indicators is very popular.


2012 ◽  
Author(s):  
A. A. Ridel ◽  
A. S. Margarit ◽  
R. A. Garfoullina ◽  
V. A. Mazhar ◽  
M. A. Almukhametov ◽  
...  

2012 ◽  
Author(s):  
A. A. Ridel ◽  
A. S. Margarit ◽  
R. A. Garifoullina ◽  
V. A. Mazhar ◽  
M. A. Almukhametov ◽  
...  

Author(s):  
Andre Albert Sahetapy Engel ◽  
Rachmat Sudibjo ◽  
Muhammad Taufiq Fathaddin

<p>The decline in production from of a field is the common problem in the oil and gas industry. One of the causes of the decrease in production is the decline of reservoir pressure. Based on the analisis result, it was found that SNP field had a weak water drive. The most dominant drive of the field was fluid expansion. In order to reduce the problem, a reservoir pressure maintenance effort was required by injecting water. In this research, the effect of water injection to reservoir pressure and cumulative production was analyzed. From the evaluation result, it was found that the existing inejection performance using one injection well to Zones A and B was not optimum. Because, the recovery factor was predicted to 29.11% only.By activating the four injection wells, the recoverty factor could be increase to 31.43%.</p>


2021 ◽  
Author(s):  
Alexander Vitalyevich Tsarenko ◽  
Valentin Nikolaevich Tarsky ◽  
Lisa Jane Robson

Abstract The objective of this article is to share an evaluation of the background, drilling outcomes and production and reservoir pressure impacts from two years of monitoring the first commingled up-dip SMART water injector drilled in the Piltun area of the Piltun-Astokhskoye offshore oil and gas field, located in Sakhalin, far east of Russia. The unique aspect of this water injector is that it was drilled into the up-dip gas caps of two separate reservoirs to provide pressure support to commingled oil producers, complementing the down-dip water injectors already in place. This article highlights some details of the well maturation decisions and expectations based on output of the dynamic modelling studies. Drilling outcomes and well performance is compared to expectations. Initial results of the surveillance programme and field data analysis based on a two-year monitoring period are discussed to show intermediate outcomes of up-dip water injection in the Piltun area. Finally, remaining questions and uncertainties are shared. Piltun-Astokhskoye is a complex multi-reservoir offshore oil and gas field with sizeable gas caps, significant heterogeneity both between and within reservoirs and a complex production history involving commingled oil producers and water injectors. Limited data is available to assess the impact of development decisions. Integrated analysis using multiple data sources and back-to-basics geology and reservoir engineering is required to understand how the reservoirs are responding to up-dip water injection, in order to predict future performance and make informed decisions to optimise the Piltun development over the long term. Surveillance data shows that up-dip water injection is effective in increasing reservoir pressure and oil recovery in one of the reservoirs, whilst having little impact on the other. Analysis shows that variable impact is due to the influence of gas cap size on up-dip water injection efficiency and the risk of trapped gas volumes due to water injection into the gas cap. The importance of integration between different sources of surveillance data and analytical tools to complete a comprehensive and reliable analysis is shown.


2012 ◽  
Vol 233 ◽  
pp. 396-400
Author(s):  
Yu Chen ◽  
Yun Bing He ◽  
Tao Wang

Water Jacket Furnace is a kind of indispensable equipment in the process of oil and gas field production, gathering and transportation. It is mainly responsible for the warming and energy supply of gathering and transportation system. After production, the oil of natural gas firstly enters the Water Jacket Furnace for pressure regulation, thermal insulation and then received the processing of separation, filtration, pressure regulation and metering; natural gas containing more impurities will gradually form sediment and eventually block the snakelike coil, resulting in Water Jacket Furnace heat exchange failure; with the continuous development of the oilfield construction, the application of Water Jacket Furnace continues to increase, and the blockage phenomenon gradually increases in correspondence; under the circumstance of being unable to solve the Water Jacket Furnace blockage by high pressure differential, this paper presents the operation method of blockage solution via fresh water injection for discussion.


2014 ◽  
Vol 598 ◽  
pp. 33-37
Author(s):  
Munawar Zaman Shahruddin ◽  
Azizal Adnan ◽  
Tengku Amran Tengku Mohd ◽  
Nur Hashimah Alias ◽  
Nurul Aimi Ghazali

As the oil and gas industry grows rapidly worldwide over the years, the production of produced water is also increasing. Million barrels of water are produced each day worldwide. This situation has become a major problem and a to the environment and ecosystem. Produced water contains many constituents such as dispersed oil, metals and chemicals that have a high toxicity and very harmful to the marine life. Therefore, it must be treated prior disposal to the environment or reinjection into the well and formation. There are many methods of treatments such as liquid-liquid hydrocyclone, floatation technology and membrane technology. Membrane technology is quite a new technology for the treatment of produced water in oil and gas industry. This paper is focused on the viability of using composite membranes which are Polysulfone (PSU), Polysulfone-bentonite (PSU-bentonite), PSU-PVP (Polysulfone-Poly vinyl pyrrolidone) and Polysulfone-Poly vinyl pyrrolidone-bentonite (PSU-PVP-bentonite) for the treatment of produced water. The objectives of this study are; 1) to characterize the produced water, 2) to prepare and cast the composite membrane and 3) to investigate the membrane performance in treating the produced water. The performance of the composite membrane were tested by using the produced water as wastewater feed and the best composite membrane is determined by the membrane performance. In the membrane preparation process, a method have been used namely phase inversion method. This research found that technically composite membrane have a good potential to be used in treating produced water from Malaysian oil and gas field. Thus, further technical and economic study on this treatment method is suggested for industrial scale application.


Sign in / Sign up

Export Citation Format

Share Document