Reducing rig personnel requirements with standards-based real-time data streaming

2018 ◽  
Vol 58 (2) ◽  
pp. 736
Author(s):  
Ross Philo ◽  
Jay Hollingsworth

Cost reductions have become an essential response to lower oil and gas prices. Drilling rigs operate in distant and sometimes hostile environments, so relocating rig-based experts to remote control centres saves costs and improves health, safety and environment (HSE). Key staff can work in an improved environment and movements to-and-from the rig are fewer, lowering transport-related costs and risks. The offsite experts can apply their expertise to the operations of multiple drilling rigs from a single location. To make this a reality, data from thousands of sensors on the rig and from measurement devices such as logging while drilling must be fed to the control room instantaneously and continuously. Legacy systems that poll rig-based devices for new data consume significant bandwidth and deliver data in a discontinuous manner with delays of 15 s or more. This does not meet the criteria for safe and reliable remote control of a rig and has been the reason why many roles have remained rig-based. This paper describes a new set of protocols that establish a continuous stream of data from devices on the rig to the control room with sub-second lag time. The new protocol also uses an order of magnitude less bandwidth, thus allowing more data to be carried in less time. Associated with industry-standard well-site information transfer standard mark-up language data transfer formats, the process operates with numerous service providers and software systems transparently. This paper includes a case-study to which the new protocol is applied, resulting in fewer permanent staff on a North Sea rig and fewer visits by an intervention contractor to the rig, with clear cost savings and HSE risk mitigation.

2021 ◽  
Author(s):  
Saif Al Arfi ◽  
Fatima AlSowaidi ◽  
Fernando Ruiz ◽  
Ibrahim Hamdy ◽  
Yousef Tobji ◽  
...  

Abstract To meet the current oil and gas market challenges, there is an industry need to optimize cost by safely drilling longer horizontal wells to maximize well productivity. Drilling challenges include the highly deviated trajectory that starts from the surface sections and wellhead, the high DogLeg Sevirity (DLS) profile with collision risks, and the thin complex geological structures, especially in new unconventional fields where numerous geological and geomechanical uncertainties are present. To mitigate for those challenges, reviewing the existing drilling techniques and technologies is necessary. To compete in the current Hi-Tech and Automation era, the main challenges for directional drilling service providers are to reduce well time, place wells accurately, and improve reliability, reducing repair and maintenance costs and helping the customer reduce time and costs for the overall project. Offset wells analysis and risk assessments allowed identifying the main challenges and problems during directional drilling phases, which were highlighted and summarized. As a proposed solution, the new generation of intelligent fully rotating high dogleg push-the-bit rotary steerable system has been implemented in the UAE onshore oil and gas fields to improve the directional drilling control and the performance. This implementation reduced the Non-Productive time (NPT) related to the human errors as the fully automation capabilities were being utilized. The new rotary steerable system has the highest mechanical specs in the market including self-diagnosis and self-prognosis through digital electronics and sophisticated algorithms that monitor equipment health in real-time and allow for managing the tool remotely. As a result, the new intelligent RSS was implemented in all possible complex wellbore conditions, such as wells with high DLS profile, drilling vertical, curve, and lateral sections in a single trip with high mud weight and high solid contents. Automation cruise control gave the opportunity to eliminate any well profile issues and maintain the aggressive drilling parameters. Using the Precise Near-bit Inclination and Azimuth and the At-Bit Gamma real-time data and high-frequency tool face measurements in the landing intervals where required for precise positional control to enable entering the reservoir in the correct location and with the correct attitude helping the customer's Geology and Geophysics department to place wells accurately while maintaining a high on bottom ROP.


2020 ◽  
Vol 5 (2) ◽  
pp. 131-150
Author(s):  
Nikhat Akhtar ◽  
Yusuf Perwej

The increase of intelligent environments suggests the interconnectivity of applications and the use of the Internet. For this reason, arise what is known as the Internet of Things (IoT). The expansion of the IoT concept gives access to the Internet of Nano Things (IoNT). A new communication networks paradigm based on nano technology and IoT, in other words, a paradigm with the capacity to interconnect nano-scale devices through existing networks. From the interconnection of these nano machines with the Internet emerged the concept of Internet of Nano Things (IoNT). The Internet of Nano-Things (IoNT) is a system of nano connected devices, objects, or organisms that have unique identifiers to transfer data over a computer or cellular network wirelessly to the Cloud. The data delivery, caching, and energy consumption are among the most significant topics in the IoNT nowadays. The nano-networks paradigm can empower the consumers to make a difference to their well-being by connecting data to personalized analysis within timely insights. The real-time data can be used in a diversification of nano-applications in the Internet of Nano-Things (IoNT), from preventive treatment to diagnostics and rehabilitation. In this paper intelligibly explains the Internet of Nano Things (IoNT), its architecture, challenges, explains the role of IoNT in global market, IoNT applications in various domains. Internet of things has provided countless new opportunity to create a powerful industrialized structure and many more. The key applications for IoNT communication including healthcare, transportation and logistics, defense and aerospace, media and entertainment, manufacturing, oil and gas, high speed data transfer & cellular, multimedia, immune system support and others services. In the end, since security is considered to be one of the main issues of the IoNT system, we provide an in-depth discussion on security, communication network and Internet of Nano Things (IoNT) market trends.


2021 ◽  
Author(s):  
Mohamed Hammad ◽  
Julian Hernandez ◽  
Angel Hernandez ◽  
Karim Mammadli ◽  
Rustam Soltanov

Abstract In pursuit of efficiency and well construction cost optimization, the oil and gas industry demand continuous improvements and constant evolution of the service providers’ hardware and software, including Managed Pressure Drilling (MPD) technologies. Recently deployed in the Caspian Sea, the new automated riser system enabled an operator to reduce manual working hours in the moonpool by 85% and installation time by 59%. The improved efficiencies represent an additional saving of 19.5 hours rig time compared to the previous generation MPD below tension ring (BTR) systems, which are currently used on more than 19 floaters around the world. Lessons learned over the past 10 years led to the design and release of the new automated technology that resulted in this time and cost savings. The operator currently targets deep reservoirs that cannot be drilled using conventional drilling techniques because of very narrow operating windows. This paper discusses the service delivery process, engineering, and operational challenges that culminated in the flawlessly executed first deployment of the automated MPD riser system.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ankita RayChowdhury ◽  
Ankita Pramanik ◽  
Gopal Chandra Roy

AbstractThis paper presents an approach to access real time data from underground mine. Two advance technologies are presented that can improve the adverse environmental effect of underground mine. Visible light communication (VLC) technology is incorporated to estimate the location of miners inside the mine. The distribution of signal to noise ratio (SNR) for VLC system is also studied. In the second part of the paper, long range (LoRa) technology is introduced for transmitting underground information to above the surface control room. This paper also includes details of the LoRa technology, and presents comparison of ranges with existing above the surface technologies.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-36
Author(s):  
Fei Chen ◽  
Duming Luo ◽  
Tao Xiang ◽  
Ping Chen ◽  
Junfeng Fan ◽  
...  

Recent years have seen the rapid development and integration of the Internet of Things (IoT) and cloud computing. The market is providing various consumer-oriented smart IoT devices; the mainstream cloud service providers are building their software stacks to support IoT services. With this emerging trend even growing, the security of such smart IoT cloud systems has drawn much research attention in recent years. To better understand the emerging consumer-oriented smart IoT cloud systems for practical engineers and new researchers, this article presents a review of the most recent research efforts on existing, real, already deployed consumer-oriented IoT cloud applications in the past five years using typical case studies. Specifically, we first present a general model for the IoT cloud ecosystem. Then, using the model, we review and summarize recent, representative research works on emerging smart IoT cloud system security using 10 detailed case studies, with the aim that the case studies together provide insights into the insecurity of current emerging IoT cloud systems. We further present a systematic approach to conduct a security analysis for IoT cloud systems. Based on the proposed security analysis approach, we review and suggest potential security risk mitigation methods to protect IoT cloud systems. We also discuss future research challenges for the IoT cloud security area.


2021 ◽  
Author(s):  
Jesus Manuel Felix Servin ◽  
Hala A. Al-Sadeg ◽  
Amr Abdel-Fattah

Abstract Tracers are practical tools to gather information about the subsurface fluid flow in hydrocarbon reservoirs. Typical interwell tracer tests involve injecting and producing tracers from multiple wells to evaluate important parameters such as connectivity, flow paths, fluid-fluid and fluid-rock interactions, and reservoir heterogeneity, among others. The upcoming of nanotechnology enables the development of novel nanoparticle-based tracers to overcome many of the challenges faced by conventional tracers. Among the advantages of nanoparticle-based tracers is the capability to functionalize their surface to yield stability and transportability through the subsurface. In addition, nanoparticles can be engineered to respond to a wide variety of stimuli, including light. The photoacoustic effect is the formation of sound waves following light absorption in a material sample. The medical community has successfully employed photoacoustic nanotracers as contrast agents for photoacoustic tomography imaging. We propose that properly engineered photoacoustic nanoparticles can be used as tracers in oil reservoirs. Our analysis begins by investigating the parameters controlling the conversion of light to acoustic waves, and strategies to optimize such parameters. Next, we analyze different kind of nanoparticles that we deem potential candidates for our subsurface operations. Then, we briefly discuss the excitation sources and make a comparison between continuous wave and pulsed sources. We finish by discussing the research gaps and challenges that must be addressed to incorporate these agents into our operations. At the time of this writing, no other study investigating the feasibility of using photoacoustic nanoparticles for tracer applications was found. Our work paves the way for a new class of passive tracers for oil reservoirs. Photoacoustic nanotracers are easy to detect and quantify and are therefore suitable for continuous in-line monitoring, contributing to the ongoing real-time data efforts in the oil and gas industry.


2018 ◽  
Vol 8 (11) ◽  
pp. 2216
Author(s):  
Jiahui Jin ◽  
Qi An ◽  
Wei Zhou ◽  
Jiakai Tang ◽  
Runqun Xiong

Network bandwidth is a scarce resource in big data environments, so data locality is a fundamental problem for data-parallel frameworks such as Hadoop and Spark. This problem is exacerbated in multicore server-based clusters, where multiple tasks running on the same server compete for the server’s network bandwidth. Existing approaches solve this problem by scheduling computational tasks near the input data and considering the server’s free time, data placements, and data transfer costs. However, such approaches usually set identical values for data transfer costs, even though a multicore server’s data transfer cost increases with the number of data-remote tasks. Eventually, this hampers data-processing time, by minimizing it ineffectively. As a solution, we propose DynDL (Dynamic Data Locality), a novel data-locality-aware task-scheduling model that handles dynamic data transfer costs for multicore servers. DynDL offers greater flexibility than existing approaches by using a set of non-decreasing functions to evaluate dynamic data transfer costs. We also propose online and offline algorithms (based on DynDL) that minimize data-processing time and adaptively adjust data locality. Although DynDL is NP-complete (nondeterministic polynomial-complete), we prove that the offline algorithm runs in quadratic time and generates optimal results for DynDL’s specific uses. Using a series of simulations and real-world executions, we show that our algorithms are 30% better than algorithms that do not consider dynamic data transfer costs in terms of data-processing time. Moreover, they can adaptively adjust data localities based on the server’s free time, data placement, and network bandwidth, and schedule tens of thousands of tasks within subseconds or seconds.


2008 ◽  
Vol 83 (2-3) ◽  
pp. 480-485 ◽  
Author(s):  
G. Abla ◽  
D.P. Schissel ◽  
B.G. Penaflor ◽  
G. Wallace
Keyword(s):  

2018 ◽  
Vol 228 ◽  
pp. 02001
Author(s):  
Bing Han ◽  
Qiang Fu

For the sake of ameliorating the faultiness of low precision for conventional surveillance methods of water stage, and realize the goal of real time data collection, automated actions and long-distance conveying, we have designed a novel surveillance system of water stage with the resonator pressure transducer and wireless connectivity technologies. The surveillance system of water stage has come into service in a field experiment project of a certain oil and gas pipeline engineering. By analyzing and comparing the results of experiments, the system has the merits of high agility, reliability, instantaneity and accuracy, low cost, capacity of resisting disturbance, which making it ideal for use in unattended supervising of water stage for multi-spots observation based on regional scale. The surveillance system can well satisfy the actual demand of auto hydrogeological parameters monitoring for geotechnical engineering.


Sign in / Sign up

Export Citation Format

Share Document