Tectonostratigraphic framework of the Lower Keraudren Formation, Bedout Sub-basin: interplay of tectonics and sedimentary systems

2018 ◽  
Vol 58 (2) ◽  
pp. 839 ◽  
Author(s):  
Jon Minken ◽  
Melissa Thompson ◽  
Jack Woodward ◽  
Fred Fernandes ◽  
Rylan Fabrici

Recent drilling activity and new seismic data have contributed to the understanding of the Lower Keraudren Formation in the Bedout Sub-Basin. The Lower Keraudren Formation is a thick (>5 km) succession of strata that was deposited rapidly during the Anisian of the Middle Triassic. Distinctive characteristics related to sediment provenance, sediment supply and accommodation have facilitated subdivision of the Formation into eight informal units: the Milne, Crespin, Baxter, Caley, Hove, Barret, Palma, and Huxley members. Tectonic elements of the East Gondwana Interior Rift and the Bedout High influenced the Sub-basin geometry during deposition of the Lower Keraudren. Extensional tectonics of the East Gondwana Interior Rift generated a series of Palaeozoic tilted fault blocks and grabens, which influenced the stratigraphic architecture, sediment dispersal patterns and distribution of reservoir and source rock facies. The structurally proud Bedout High, a roughly circular (~60 km wide) igneous feature, created a northern boundary to deposition. Seismic stratigraphic interpretation has characterised the interval as a series of north west prograding wedges. Well based data indicates the section is dominated by fluvio-deltaic deposits. Separating the Caley and Hove Members is a significant unconformity that is associated with renewed uplift of the Bedout High and a change in sediment provenance. Chemostratigraphy and petrology indicates the Caley and older strata were derived from a more mature sediment source, whereas the Hove and younger a more immature metamorphic source. Distinct changes in reservoir quality are observed above and below the Caley–Hove unconformity. Below the unconformity, the older, more mature sandstones exhibit superior reservoir quality compared with the younger, more immature sandstones.


2017 ◽  
Vol 57 (1) ◽  
pp. 263 ◽  
Author(s):  
Roisin McGee ◽  
Jeff Goodall ◽  
Stephen Molyneux

The Lower to Middle Triassic mixed carbonate–clastic system in the Northern Carnarvon Basin is poorly understood relative to the stratigraphically younger Jurassic play systems. Few well penetrations and a lack of quality seismic data have deterred exploration of this interval for many years. In recent times, the Lower to Middle Triassic source potential has been comprehensively de-risked within the Roebuck Basin, with subsequent implications across the entire North West Shelf of Australia, opening up the possibility of an entirely new regional play fairway. This paper focuses on the Candace Terrace, on the southern flank of the Carnarvon Basin, where seismic observations and interpretations of Lower to Middle Triassic submarine canyon systems have been made. The stratigraphic elements of this play interval can now be more clearly observed with the aid of 3D seismic data. Amplitude extractions show the internal geometries of these highly erosive systems are sinuous, compensating flows. The aims of this paper are to postulate the stratigraphy of the Lower to Middle Triassic on the Candace Terrace, highlight the tectonic cause of the canyon systems and discuss the prospectivity of the observed turbidite features.



Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. A27-A31 ◽  
Author(s):  
Hongliu Zeng ◽  
Robert G. Loucks ◽  
Ursula Hammes

Linear amplitude patterns on stratal slices in the Corpus Christi Bay area of Texas are important seismic geomorphological features that reflect sediment dispersal patterns. These amplitude patterns are oriented in both strike and dip directions. Some of the linear amplitude patterns are related to faults; however, most are related to orientation of sandstone bodies. Faulting may make the depositionally related linear amplitude patterns more fragmented, but faults do not destroy the overall orientation or geomorphologic significance of these patterns. Amplitude patterns on stratal slices should be interpreted as unbiased, general, sediment-dispersal patterns unless the patterns can be tied directly to a structural feature. In-depth understanding of structural and depositionally related amplitude patterns leads to more accurate stratal slicing interpretation in facies/reservoir prediction using poststack 3D seismic data.



2016 ◽  
Author(s):  
Viridis M. Miranda Berrocales ◽  
◽  
Glenn R. Sharman ◽  
Jacob A. Covault ◽  
Daniel F. Stockli


2021 ◽  
Author(s):  
S Al Naqbi ◽  
J Ahmed ◽  
J Vargas Rios ◽  
Y Utami ◽  
A Elila ◽  
...  

Abstract The Thamama group of reservoirs consist of porous carbonates laminated with tight carbonates, with pronounced lateral heterogeneities in porosity, permeability, and reservoir thickness. The main objective of our study was mapping variations and reservoir quality prediction away from well control. As the reservoirs were thin and beyond seismic resolution, it was vital that the facies and porosity be mapped in high resolution, with a high predictability, for successful placement of horizontal wells for future development of the field. We established a unified workflow of geostatistical inversion and rock physics to characterize the reservoirs. Geostatistical inversion was run in static models that were converted from depth to time domain. A robust two-way velocity model was built to map the depth grid and its zones on the time seismic data. This ensured correct placement of the predicted high-resolution elastic attributes in the depth static model. Rock physics modeling and Bayesian classification were used to convert the elastic properties into porosity and lithology (static rock-type (SRT)), which were validated in blind wells and used to rank the multiple realizations. In the geostatistical pre-stack inversion, the elastic property prediction was constrained by the seismic data and controlled by variograms, probability distributions and a guide model. The deterministic inversion was used as a guide or prior model and served as a laterally varying mean. Initially, unconstrained inversion was tested by keeping all wells as blind and the predictions were optimized by updating the input parameters. The stochastic inversion results were also frequency filtered in several frequency bands, to understand the impact of seismic data and variograms on the prediction. Finally, 30 wells were used as input, to generate 80 realizations of P-impedance, S-impedance, Vp/Vs, and density. After converting back to depth, 30 additional blind wells were used to validate the predicted porosity, with a high correlation of more than 0.8. The realizations were ranked based on the porosity predictability in blind wells combined with the pore volume histograms. Realizations with high predictability and close to the P10, P50 and P90 cases (of pore volume) were selected for further use. Based on the rock physics analysis, the predicted lithology classes were associated with the geological rock-types (SRT) for incorporation in the static model. The study presents an innovative approach to successfully integrate geostatistical inversion and rock physics with static modeling. This workflow will generate seismically constrained high-resolution reservoir properties for thin reservoirs, such as porosity and lithology, which are seamlessly mapped in the depth domain for optimized development of the field. It will also account for the uncertainties in the reservoir model through the generation of multiple equiprobable realizations or scenarios.



2021 ◽  
pp. 1-69
Author(s):  
Marwa Hussein ◽  
Robert R. Stewart ◽  
Deborah Sacrey ◽  
Jonny Wu ◽  
Rajas Athale

Net reservoir discrimination and rock type identification play vital roles in determining reservoir quality, distribution, and identification of stratigraphic baffles for optimizing drilling plans and economic petroleum recovery. Although it is challenging to discriminate small changes in reservoir properties or identify thin stratigraphic barriers below seismic resolution from conventional seismic amplitude data, we have found that seismic attributes aid in defining the reservoir architecture, properties, and stratigraphic baffles. However, analyzing numerous individual attributes is a time-consuming process and may have limitations for revealing small petrophysical changes within a reservoir. Using the Maui 3D seismic data acquired in offshore Taranaki Basin, New Zealand, we generate typical instantaneous and spectral decomposition seismic attributes that are sensitive to lithologic variations and changes in reservoir properties. Using the most common petrophysical and rock typing classification methods, the rock quality and heterogeneity of the C1 Sand reservoir are studied for four wells located within the 3D seismic volume. We find that integrating the geologic content of a combination of eight spectral instantaneous attribute volumes using an unsupervised machine-learning algorithm (self-organizing maps [SOMs]) results in a classification volume that can highlight reservoir distribution and identify stratigraphic baffles by correlating the SOM clusters with discrete net reservoir and flow-unit logs. We find that SOM classification of natural clusters of multiattribute samples in the attribute space is sensitive to subtle changes within the reservoir’s petrophysical properties. We find that SOM clusters appear to be more sensitive to porosity variations compared with lithologic changes within the reservoir. Thus, this method helps us to understand reservoir quality and heterogeneity in addition to illuminating thin reservoirs and stratigraphic baffles.



1976 ◽  
Vol 1 (15) ◽  
pp. 114
Author(s):  
E.H. Owens

Detailed field investigations of barrier beach morphology and processes at adjacent sites in the Magdalen Islands, Gulf of St. Lawrence, show that the two beaches are in distinctly different morphodynamic environments. The differences are expressed in terms of wave energy levels, sediment dispersal patterns, and nearshore, littoral, and dune geomorphology. The exposed west-facing coast has a steeper offshore gradient, is a zone of sediment bypassing, and has a complex sequence of three nearshore bars. Wave energy levels are lower on the sheltered east coast, and this is a zone of sediment redistribution and deposition with a single, linear nearshore bar. The different morphological characteristics of the two barriers are attributed to the spatial variation in energy levels and to the differences in offshore gradients on the two coasts. Computed wave energy values, derived from data monitored during two study periods (August and November, 1974), indicate that the mean wave energy levels were greater on the west coast as compared to the east coast by factors of 2.25 in summer and 2.95 in winter. This is due primarily to the dominance of winds out of the westerly quadrant throughout the year. 1975



2021 ◽  
Author(s):  
Anton Khitrenko ◽  
Adelia Minkhatova ◽  
Vladimir Orlov ◽  
Dmitriy Kotunov ◽  
Salavat Khalilov

Abstract Western Siberia is a unique petroleum basin with exclusive geological objects. Those objects allow us to test various methods of sequence stratigraphy, systematization and evaluation approaches for reservoir characterization of deep-water sediments. Different methods have potential to decrease geological uncertainty and predict distribution and architecture of deep-water sandstone reservoir. There are many different parameters that could be achieved through analysis of clinoform complex. Trajectories of shelf break, volume of sediment supply and topography of basin influence on architecture of deep-water reservoir. Based on general principles of sequence stratigraphy, three main trajectories changes shelf break might be identified: transgression, normal regression and forced regression. And each of them has its own distinctive characteristics of deepwater reservoir. However, to properly assess the architecture of deepwater reservoir and potential of it, numerical characteristics are necessary. In our paper, previously described parameters were analyzed for identification perspective areas of Achimov formation in Western Siberia and estimation of geological uncertainty for unexplored areas. In 1996 Helland-Hansen W., Martinsen O.J. [5] described different types of shoreline trajectory. In 2002 Steel R.J., Olsen T. [11] adopted types of shoreline trajectory for identification of truncation termination. O. Catuneanu (2009) [1] summarize all information with implementation basis of sequence stratigraphy. Over the past decade, many geoscientists have used previously published researches to determine relationship between geometric structures of clinoforms and architecture of deep-water sediments and its reservoir quality. Significant amount of publications has allowed to form theoretical framework for the undersanding sedimentation process and geometrical configuration of clinoforms. However, there is still no relationship between sequence stratigraphy framework of clinoroms and reservoir quality and its uncertainty, which is necessary for new area evaluation.



Sign in / Sign up

Export Citation Format

Share Document