Australia's shale industry – how we can become globally competitive

2019 ◽  
Vol 59 (2) ◽  
pp. 546
Author(s):  
Peter Cox

Project delivery technology is changing and developing at a rapid rate, and Australia’s oil and gas industry could do a better job of embracing change and getting to the forefront of advanced digital technology applied to developing onshore gas resources – particularly to our vast undeveloped shale reserves. Our shale deposits are in remote parts of our country, so present significant challenges, especially in relation to geographical distance away from local and international markets. This paper will focus on the use of automation and standardisation in the engineering design process combined with project execution strategies to significantly reduce both schedule and cost in delivering surface infrastructure required to get our gas shale reserves to both domestic demand centres and export facilities. The traditional project delivery models that have served us well in the past need to be challenged and a new paradigm adopted. Standardisation of the compression and dehydration facilities in the US market has been developed over many years, resulting in efficient project delivery, and enabling reserves to be brought to market on a fast track basis. This paper will work through practices in the US and how they can be applied to Australia. Australian standards and industry practice defines how we design our gathering and pipeline networks. This paper will present a combination of construction strategies and automation of engineering design to optimise life cycle cost in remote regions where construction mobilisation and logistics is a significant factor combined with changing priorities as further reservoir data is obtained from exploration wells.

2021 ◽  
Author(s):  
Ning Lou ◽  
Ezra Wari ◽  
James Curry ◽  
Kevin McSweeney ◽  
Rick Curtis ◽  
...  

This research identifies key factors, or safety culture categories, that can be used to help describe the safety culture for the offshore oil and gas industry and develop a comprehensive offshore safety culture assessment toolkit for use by the US Gulf of Mexico (GoM) owners and operators. Detailed questionnaires from selected safety culture frameworks of different industries were collected and analyzed to identify important safety culture factors and key questions for assessment. Safety frameworks from different associations were investigated, including the Center for Offshore Safety (COS), Bureau of Safety and Environmental Enforcement (BSEE), and the National Transportation Safety Board (NTSB). The safety culture factors of each of these frameworks were generalized and analyzed. The frequency of the safety culture factors in each framework was analyzed to explore commonality. The literature review and analysis identified a list of common factors among safety culture frameworks.


2020 ◽  
Vol 72 (12) ◽  
pp. 34-37
Author(s):  
Demetra V. Collia ◽  
Roland L. Moreau

Introduction In the aftermath of the Deepwater Horizon oil spill, the oil and gas industry, regulators, and other stakeholders recognized the need for increased collaboration and data sharing to augment their ability to better identify safety risks and address them before an accident occurs. The SafeOCS program is one such collaboration between industry and government. It is a voluntary confidential reporting program that collects and analyzes data to advance safety in oil and gas operations on the Outer Continental Shelf (OCS). The US Bureau of Safety and Environmental Enforcement (BSEE) established the program with input from industry and then entered into an agreement with the US Bureau of Transportation Statistics (BTS) to develop, implement, and operate the program. As a principal statistical agency, BTS has considerable data-collection-and-analysis expertise with near-miss reporting systems for other industries and the statutory authority to protect the confidentiality of the reported information and the reporter’s identify. Source data submitted to BTS are not subject to subpoena, legal discovery, or Freedom of Information Act (FOIA) requests. Solving for the Gap Across industries, companies have long realized the benefits of collecting and analyzing data around safety and environmental events to identify risks and take actions to prevent reoccurrence. These activities are aided by industry associations that collect and share event information and develop recommended practices to improve performance. In high-reliability industries such as aviation and nuclear, it is common practice to report and share events among companies and for the regulators to identify hidden trends and create or update existing recommended practices, regulations, or other controls. The challenge for the offshore oil and gas industry is that industry associations and the regulator are typically limited to collecting data on agency-reportable incidents. With this limitation, other high-learning-value events or observed conditions could go unnoticed as a trend until a major event occurs. This lack of timely data represented an opportunity for the industry and the offshore regulator (BSEE) to collaborate on a means of gathering safety-event data that would allow for analysis and identification of trends, thereby enabling appropriate interventions to prevent major incidents and foster continuous improvement. The SafeOCS Industry Safety Data (ISD) program provides an effective process for capturing these trends by looking across a wider spectrum of events, including those with no consequences.


2018 ◽  
Vol 6 (2) ◽  
pp. 5M-12M ◽  
Author(s):  
Steve Tobias

Four years ago, several visionaries from SEG and AAPG collaborated to create Interpretation, a journal that serves the unique community of integrated interpretation. As the late R. Randy Ray wrote at the time, “It marks a historic recognition that geology and geophysics are intertwined at the core.” Indeed, this core community drives the exploration engine that powers the oil and gas industry through the multidisciplinary study of the petroleum system. The time has come for this same community to apply its considerable intellectual and operational acumen to optimizing another system that is rarely recognized as such: near-field exploration. Unlike “pure” conventional exploration, near-field exploration tends to be much more organizationally complex. Exploration functions need to deal with producing assets. Offices set in different cultures and separated by many time zones need to work together flawlessly. Engineering-centric dynamic geocellular models need to mesh with map-based static descriptions of the earth. Most importantly, a culture of value assurance needs to be balanced with a spirit of exploration that demands a culture of creativity and risk taking. These compartmentalized and layered oil and gas organizations share one important characteristic with the heterogeneous earth: each component can be considered to have its own unique impedance. As all interpreters know, elastic impedance contrasts associated with geological heterogeneity give rise to reflected seismic signals, the acquisition, processing, and interpretation of which are our bread and butter. Yet while organizational boundaries also impede the free flow of energy (in the form of knowledge/information, processes, workflows, etc.), there is little awareness that signals reflected from organizational impedance contrasts can be studied and ultimately inverted to understand and optimize various organizational components. Taken together, the heterogeneous environment known as near-field exploration can be modeled as a complex arrangement of different types of impedances, with (usually unmonitored) signals emanating from the many impedance contrasts. The monitoring, processing, and interpretation of these organizational signals are shown to fit well into the Shewhart cycle of plan-do-check-act, something that our engineering colleagues use regularly in their lean manufacturing processes. This paper introduces what for many will be a new paradigm for the organizational development of companies focused on near-infrastructure exploration. And yet for most interpreters reading this, it will seem “old hat.” Our community has been unmasking the geology associated with boundary reflections for almost a century. The time has come to improve the organizations within which we toil by applying our skills to the study of organizational impedance contrasts.


2014 ◽  
Vol 54 (1) ◽  
pp. 231
Author(s):  
Julie Whitehead ◽  
Karen Walters

The past year has seen a downturn in the number of new mining and infrastructure projects in Australia. Despite that, the authors are noticing a continuation of the trend towards a greater use of engineering, procurement and construction management (EPCM) style contracting. The increased use of EPCM contracts is in part due to projects becoming larger and more complex. As these projects can only be delivered by multiple contractors who all seek to limit their liability, the EPCM contract offers a useful framework for coordinating and managing those contractors, and maximising the owner’s recourse to them. This is particularly so in the oil and gas industry, with many projects using this form of project delivery. As there is no standard-form EPCM contract, however, and given the complex technical nature of these types of projects, negotiating an EPCM contract can be fraught with danger, especially for owners who may not have used this style of contract before. This paper discusses the unique characteristics of the EPCM contract (particularly in contrast to the engineering, procurement and construction style contract), the typical risk allocation, and the creative use of compensation and incentive regimes to drive optimum performance. The EPCM model is not suited to all projects, but if it is appropriately negotiated and drafted, and is well managed by an appropriately skilled and resourced owner’s team, it can provide a platform for excellence in project delivery.


2020 ◽  
Vol 52 (37) ◽  
pp. 4112-4134 ◽  
Author(s):  
Hung Quang Do ◽  
M. Ishaq Bhatti ◽  
Muhammad Shahbaz

Author(s):  
Ashish Khera ◽  
Rajesh Uprety ◽  
Bidyut B. Baniah

The responsibility for managing an asset safely, efficiently and to optimize productivity lies solely with the pipeline operators. To achieve these objectives, operators are implementing comprehensive pipeline integrity management programs. These programs may be driven by a country’s pipeline regulator or in many cases may be “self-directed” by the pipeline operator especially in countries where pipeline regulators do not exist. A critical aspect of an operator’s Integrity Management Plan (IMP) is to evaluate the history, limitations and the key threats for each pipeline and accordingly select the most appropriate integrity tool. The guidelines for assessing piggable lines has been well documented but until recently there was not much awareness for assessment of non-piggable pipelines. A lot of these non-piggable pipelines transverse through high consequence areas and usually minimal historic records are available for these lines. To add to the risk factor, usually these lines also lack any baseline assessment. The US regulators, that is Office of Pipeline Safety had recognized the need for establishment of codes and standards for integrity assessment of all pipelines more than a decade ago. This led to comprehensive mandatory rules, standards and codes for the US pipeline operators to follow regardless of the line being piggable or non-piggable. In India the story has been a bit different. In the past few years, our governing body for development of self-regulatory standards for the Indian oil and gas industry that is Oil Industry Safety Directorate (OISD) recognized a need for development of a standard specifically for integrity assessment of non-piggable pipelines. The standard was formalized and accepted by the Indian Ministry of Petroleum in September 2013 as OISD 233. OISD 233 standard is based on assessing the time dependent threats of External Corrosion (EC) and Internal Corrosion (IC) through applying the non-intrusive techniques of “Direct Assessment”. The four-step, iterative DA (ECDA, ICDA and SCCDA) process requires the integration of data from available line histories, multiple indirect field surveys, direct examination and the subsequent post assessment of the documented results. This paper presents the case study where the Indian pipeline operators took a self-initiative and implemented DA programs for prioritizing the integrity assessment of their most critical non-piggable pipelines even before the OISD 233 standard was established. The paper also looks into the relevance of the standard to the events and other case studies following the release of OISD 233.


2011 ◽  
Vol 48 (11) ◽  
pp. 1658-1673 ◽  
Author(s):  
M.S. Hossain ◽  
M.J. Cassidy ◽  
R. Baker ◽  
M.F. Randolph

“Spudcan” foundations for mobile drilling rigs continue to exhibit a high failure rate in the offshore oil and gas industry. The more frequent use of larger jack-ups in highly stratified regions, such as the Sunda Shelf in Southeast Asia, contributes to this concerning increase in “punch-through” incidents, which can lead to buckling of a leg or even toppling of the rig. An industry practice known as “perforation drilling” is sometimes used to mitigate the punch-through risk in layered clays, extracting soil from the upper strong layer before the jack-up is installed. This paper reports results from centrifuge model tests exploring the efficiency of perforation drilling. The soil conditions tested simulate offshore strength profiles that have reported punch-through failures. An experimental method for “drilling” sites in an enhanced gravity centrifuge environment was developed and the installation responses of model spudcan foundations penetrating through multi-layered clays with interbedded stiff layers were recorded. The experimental results show that the removal of soil inside the spudcan perimeter, with an area of 9% perforated, eliminated rapid leg run and severe punch-through on the two- and four-layer seabed profiles tested. This confirms the effectiveness of perforation drilling and indicates how the offshore drilling plan may be optimized.


Georesursy ◽  
2020 ◽  
pp. 15-18
Author(s):  
Nikolay P. Zapivalov

The scale of risks, uncertainties, errors and disasters associated with the prospecting, exploration and production of hydrocarbons that has accumulated to date makes it necessary to rethink the fundamental principles of the oil and gas industry. After 70 years of educational, practical and scientific work in petroleum geology, developing the foundations of geofluidodynamics of oil and gas-saturated systems, the author came to the conclusion about the need to develop a new paradigm. The main author’s petro-geological paradigm is that an oil reservoir is a living fluid-rock system, the state and parameters of which can rapidly change in a continuous mode under the influence of natural and man-made factors in accordance with the laws of spontaneous self-regulation. Suggestions and recommendations are made for the competent management of the technological process of oil production.


Author(s):  
Christopher Klarmann

ABSTRACT Cyber threats to the oil and gas industry have been existent in one form or another for as long as computing and networking systems have utilized to increase the efficiency of production and transportation operations. The number of systems that are utilizing internet-connected technology to aid the industry has risen dramatically over the past 20 years, seeing use on exploration, management of production systems, Supervisory Control and Data Acquisition (SCADA), and supply chain management. As the number of available exploits and attacks against these systems increases over time, it is more necessary than ever to ensure that cybersecurity is in facility and vessel plans. Incorporating cybersecurity measures into the existing security framework will be critical to ensuring that malicious actors do not impact communities and the environment through destructive attacks upon production and transportation. This paper will provide a look at the impact cyberattacks may have on the safe production, storage, and transportation of oil, as well as provide insight as to what industry standards and legal proposals exist to ensure that industry partners are operating securely throughout the US.


Sign in / Sign up

Export Citation Format

Share Document