Self Directed Integrity Assessment of Non-Piggable Pipelines

Author(s):  
Ashish Khera ◽  
Rajesh Uprety ◽  
Bidyut B. Baniah

The responsibility for managing an asset safely, efficiently and to optimize productivity lies solely with the pipeline operators. To achieve these objectives, operators are implementing comprehensive pipeline integrity management programs. These programs may be driven by a country’s pipeline regulator or in many cases may be “self-directed” by the pipeline operator especially in countries where pipeline regulators do not exist. A critical aspect of an operator’s Integrity Management Plan (IMP) is to evaluate the history, limitations and the key threats for each pipeline and accordingly select the most appropriate integrity tool. The guidelines for assessing piggable lines has been well documented but until recently there was not much awareness for assessment of non-piggable pipelines. A lot of these non-piggable pipelines transverse through high consequence areas and usually minimal historic records are available for these lines. To add to the risk factor, usually these lines also lack any baseline assessment. The US regulators, that is Office of Pipeline Safety had recognized the need for establishment of codes and standards for integrity assessment of all pipelines more than a decade ago. This led to comprehensive mandatory rules, standards and codes for the US pipeline operators to follow regardless of the line being piggable or non-piggable. In India the story has been a bit different. In the past few years, our governing body for development of self-regulatory standards for the Indian oil and gas industry that is Oil Industry Safety Directorate (OISD) recognized a need for development of a standard specifically for integrity assessment of non-piggable pipelines. The standard was formalized and accepted by the Indian Ministry of Petroleum in September 2013 as OISD 233. OISD 233 standard is based on assessing the time dependent threats of External Corrosion (EC) and Internal Corrosion (IC) through applying the non-intrusive techniques of “Direct Assessment”. The four-step, iterative DA (ECDA, ICDA and SCCDA) process requires the integration of data from available line histories, multiple indirect field surveys, direct examination and the subsequent post assessment of the documented results. This paper presents the case study where the Indian pipeline operators took a self-initiative and implemented DA programs for prioritizing the integrity assessment of their most critical non-piggable pipelines even before the OISD 233 standard was established. The paper also looks into the relevance of the standard to the events and other case studies following the release of OISD 233.

2011 ◽  
Vol 422 ◽  
pp. 705-715 ◽  
Author(s):  
Patuan Alfon ◽  
Johny W. Soedarsono ◽  
Dedi Priadi ◽  
S Sulistijono

Reliability of equipment of the oil and gas industry is vital, whereas on pipeline transmission system, decreasing the integrity of the pipeline is generally caused by corrosion. Failure that occurs due to corrosion deterioration influenced by the environment within a certain time, and has exceeded the nominal thickness of the pipe so there is a failure. This study used the reliability analysis approach based on modeling corrosion degradation ratio that is determined by the amount of the corrosion rate externally and internally. Using the Weibull probabilistic distribution method, results that the reliability of pipeline will decrease with increasing lifetime. It was identified that internal corrosion has a major contribution to the remaining life of pipeline. From the calculation results obtained by external corrosion has the greatest reliability over 60 years, followed by internal corrosion less than 30 years and the least is by cumulative corrosion which is less than 20 years. From the value of reliability, it can be known probability of failure (POF) which is the anti reliability.


Author(s):  
Karine Kutrowski ◽  
Rob Bos ◽  
Jean-Re´gis Piccardino ◽  
Marie Pajot

On January 4th 2007 TIGF published the following invitation for tenders: “Development and Provision of a Pipeline Integrity Management System”. The project was awarded to Bureau Veritas (BV), who proposed to meet the requirements of TIGF with the Threats and Mitigations module of the PiMSlider® suite extended with some customized components. The key features of the PiMSlider® suite are: • More than only IT: a real integrity philosophy, • A simple intuitive tool to store, display and update pipeline data, • Intelligent search utilities to locate specific information about the pipeline and its surrounding, • A scalable application, with a potentially unlimited number of users, • Supervision (during and after implementation) by experienced people from the oil and gas industry. This paper first introduces TIGF and the consortium BV – ATP. It explains in a few words the PIMS philosophy captured in the PiMSlider® suite and focuses on the added value of the pipeline Threats and Mitigations module. Using this module allows the integrity analyst to: • Prioritize pipeline segments for integrity surveillance purposes, • Determine most effective corrective actions, • Assess the benefits of corrective actions by means of what-if scenarios, • Produce a qualitative threats assessment for further use in the integrity management plan, • Optimize integrity aspects from a design, maintenance and operational point of view, • Investigate the influence of different design criteria for pipeline segments. To conclude, TIGF presents the benefits of the tool for their Integrity Management department and for planning inspection and for better knowledge of their gas transmission grid.


2021 ◽  
Author(s):  
Ning Lou ◽  
Ezra Wari ◽  
James Curry ◽  
Kevin McSweeney ◽  
Rick Curtis ◽  
...  

This research identifies key factors, or safety culture categories, that can be used to help describe the safety culture for the offshore oil and gas industry and develop a comprehensive offshore safety culture assessment toolkit for use by the US Gulf of Mexico (GoM) owners and operators. Detailed questionnaires from selected safety culture frameworks of different industries were collected and analyzed to identify important safety culture factors and key questions for assessment. Safety frameworks from different associations were investigated, including the Center for Offshore Safety (COS), Bureau of Safety and Environmental Enforcement (BSEE), and the National Transportation Safety Board (NTSB). The safety culture factors of each of these frameworks were generalized and analyzed. The frequency of the safety culture factors in each framework was analyzed to explore commonality. The literature review and analysis identified a list of common factors among safety culture frameworks.


2020 ◽  
Vol 72 (12) ◽  
pp. 34-37
Author(s):  
Demetra V. Collia ◽  
Roland L. Moreau

Introduction In the aftermath of the Deepwater Horizon oil spill, the oil and gas industry, regulators, and other stakeholders recognized the need for increased collaboration and data sharing to augment their ability to better identify safety risks and address them before an accident occurs. The SafeOCS program is one such collaboration between industry and government. It is a voluntary confidential reporting program that collects and analyzes data to advance safety in oil and gas operations on the Outer Continental Shelf (OCS). The US Bureau of Safety and Environmental Enforcement (BSEE) established the program with input from industry and then entered into an agreement with the US Bureau of Transportation Statistics (BTS) to develop, implement, and operate the program. As a principal statistical agency, BTS has considerable data-collection-and-analysis expertise with near-miss reporting systems for other industries and the statutory authority to protect the confidentiality of the reported information and the reporter’s identify. Source data submitted to BTS are not subject to subpoena, legal discovery, or Freedom of Information Act (FOIA) requests. Solving for the Gap Across industries, companies have long realized the benefits of collecting and analyzing data around safety and environmental events to identify risks and take actions to prevent reoccurrence. These activities are aided by industry associations that collect and share event information and develop recommended practices to improve performance. In high-reliability industries such as aviation and nuclear, it is common practice to report and share events among companies and for the regulators to identify hidden trends and create or update existing recommended practices, regulations, or other controls. The challenge for the offshore oil and gas industry is that industry associations and the regulator are typically limited to collecting data on agency-reportable incidents. With this limitation, other high-learning-value events or observed conditions could go unnoticed as a trend until a major event occurs. This lack of timely data represented an opportunity for the industry and the offshore regulator (BSEE) to collaborate on a means of gathering safety-event data that would allow for analysis and identification of trends, thereby enabling appropriate interventions to prevent major incidents and foster continuous improvement. The SafeOCS Industry Safety Data (ISD) program provides an effective process for capturing these trends by looking across a wider spectrum of events, including those with no consequences.


Author(s):  
Terry Griffiths ◽  
Scott Draper ◽  
Liang Cheng ◽  
Feifei Tong ◽  
Antonino Fogliani ◽  
...  

As offshore renewable energy projects progress from concept demonstration to commercial-scale developments there is a need for improved approaches beyond conventional cable engineering design methods that have evolved from larger diameter pipelines for the oil and gas industry. New approaches are needed to capture the relevant physics for small diameter cables on rocky seabeds to reduce the costs and risks of power transmission and increase operational reliability. This paper reports on subsea cables that MeyGen installed for Phase 1a of the Pentland Firth Inner Sound tidal stream energy project. These cables are located on rocky seabeds in an area where severe metocean conditions occur. ROV field observation of these cables shows them to be stable on the seabed with little or no movement occurring over almost all of the cable routes, despite conventional engineering methods predicting significant dynamic movement. We cite recent research undertaken by the University of Western Australia (UWA) to more accurately assess the hydrodynamic forces and geotechnical interaction of cables on rocky seabeds. We quantify the conformity between the cables and the undulating rocky seabed, and the distributions of cable-seabed contact and spanning via simulations of the centimetric-scale seabed bathymetry. This analysis leads to calculated profiles of lift, drag and seabed friction along the cable, which show that all of these load and reaction components are modelled in an over-conservative way by conventional pipeline engineering techniques. Overall, our analysis highlights that current cable stability design can be unnecessarily conservative on rocky seabeds. Our work foreshadows a new design approach that offers more efficient cable design to reduce project capex and enhance through-life integrity management.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
M. K. F. M. Ali ◽  
N. Md. Noor ◽  
N. Yahaya ◽  
A. A. Bakar ◽  
M. Ismail

Pipelines play an extremely important role in the transportation of gases and liquids over long distance throughout the world. Internal corrosion due to microbiologically influenced corrosion (MIC) is one of the major integrity problems in oil and gas industry and is responsible for most of the internal corrosion in transportation pipelines. The presence of microorganisms such as sulfate reducing bacteria (SRB) in pipeline system has raised deep concern within the oil and gas industry. Biocide treatment and cathodic protection are commonly used to control MIC. However, the solution is too expensive and may create environmental problems by being too corrosive. Recently, Ultraviolet (UV) as one of the benign techniques to enhance mitigation of MIC risk in pipeline system has gained interest among researchers. An amount of 100 ml of modified Baar’s medium and 5 ml of Desulfovibrio vulgaris (strain 7577) seeds was grown in 125 ml anaerobic vials with carbon steel grade API 5L-X70 coupons at the optimum temperature of 37°C and pH 9.5 for fifteen days. This was then followed by exposing the medium to UV for one hour. Results from present study showed that UV radiation has the ability to disinfect bacteria, hence minimizing the risk of metal loss due to corrosion in steel pipeline. 


2020 ◽  
Vol 60 (1) ◽  
pp. 215
Author(s):  
Ricky Thethi ◽  
Dharmik Vadel ◽  
Mark Haning ◽  
Elizabeth Tellier

Since the 2014 oil-price downturn, the offshore oil and gas industry has accelerated implementation of digital technologies to drive cost efficiencies for exploration and production operations. The upstream offshore sector comprises many interfacing disciplines such as subsurface, drilling and completions, facilities and production operations. Digital initiatives in subsurface imaging, drilling of subsea wells and topsides integrity have been well publicised within the industry. Integrity of the subsea infrastructure is one area that is currently playing catch up in the digital space and lends itself well for data computational efficiencies that artificial-intelligence technologies provide, to reduce cost and lower the risk of subsea equipment downtime. This paper details digital technologies employed in the area of subsea integrity management to meet the objectives of centralising access to critical integrity data, automating workflows to collect and assess data, and using machine learning to perform more accurate and faster engineering analysis with large volumes of field-measured data. A comparison of a typical subsea field is presented using non-digital and digital approaches to subsea integrity management (IM). The comparison demonstrates where technologies such as digital twins for dynamic structures, and auto anomaly detection by using image recognition algorithms can be deployed to provide a step change in the quality of subsea integrity data coming from field. It is demonstrated how the use of a smart IM approach, combined with strong domain knowledge in subsea engineering, can lead to cost efficiencies in operating subsea assets.


Author(s):  
Tobiloba Elusakin ◽  
Mahmood Shafiee ◽  
Tosin Adedipe

Abstract With the steadily growing demand for energy in the world, oil and gas companies are finding themselves facing increasing capital and operating costs. To ensure the economic viability of investments and improve the safety of operations, oil and gas companies are promoting their asset integrity management (AIM) systems. In the past, the oil and gas industry adopted reactive maintenance regimes, which involved recertification, testing and repair of faulty equipment while trying to achieve minimum downtime. As technology becomes more affordable, operators have been able to carry out improved fault diagnosis, prognosis and maintenance optimisation. As a result of this, condition-based maintenance (CBM) is being adopted more and more as the preeminent maintenance regime for oil and gas equipment. The blowout preventer (BOP) is one of the most expensive and safety critical drilling equipment in the oil and gas industry. However, there have been very few studies and best practices about how to develop a CBM policy and what specific monitoring techniques and devices will be required to implement it for the BOP system. This paper proposes a V-model based architecture for designing a CBM policy in BOP systems. As a result of the model proposed, gaps in implementation are identified and all the hardware, software and training requirements for implementing the CBM solution in BOP systems will be outlined in detail. Our proposed CBM framework will help BOP operators and maintenance personnel make cost savings through less repairs and replacements and minimal downtime.


2021 ◽  
Author(s):  
Chinedu Oragwu ◽  
Daniel Molyneux ◽  
Lukeman Lawal ◽  
Stanley Ameh

Abstract Carbon steel pipelines are used to transport hydrocarbons globally because carbon steel is relatively easier to fabricate, safe for use, raw materials are available and less expensive. Amidst these benefits, carbon steel is susceptible to severe corrosion and other anomalies. Pipeline corrosion is a significant concern in the oil and gas industry. It has caused several minor and catastrophic losses of containment with resultant fatalities, environmental pollutions, asset damage, and production downtimes. The increasing failures of in-service pipelines have led the Department of Petroleum Resources (DPR) to intensify regulatory scrutiny of pipeline integrity assessment and management in Nigeria to ensure strict compliance to the regulatory requirements by the Oil Producing Companies. According to DPR Act (Section 2.5.2.1), all pipelines greater than 6" size diameter must be inspected every five (5) years with intelligent pigs (inline inspection tools) that would provide the accurate condition of the pipeline. However, many pipelines in Nigeria are unpiggable or difficult to inspect with intelligent pigs due to the unavailability of pigging facilities (especially in brownfields), pipelines with short bend radiuses, dual diameters, flow parameters, etcetera. This paper explores case studies involving the use of advanced inline inspection technology to conduct inline inspection of difficult-to-inspect dual-diameter pipelines.


Sign in / Sign up

Export Citation Format

Share Document