THE G-LOG* SEISMIC INVERSION PROCESS

1981 ◽  
Vol 21 (1) ◽  
pp. 155
Author(s):  
D. B. Hays ◽  
J. Wardell

The G-LOG process is a method of seismic inversion which provides direct estimates of subsurface acoustic impedance from wavelet process stacked or migrated data. The fundamentals and characteristics of the inversion method will be discussed and examples of its use on Australian seismic data will be presented.G-LOG functions are derived by an iterative subsurface modelling technique based on a rigorous inversion of one- dimensional wave equation. This process finds the acoustic impedance model, or log, whose resulting wave-equation- consistent synthetic seismogram best matches the input seismic data in a least mean squared error sense. Multiple reflections are included in the synthetic seismogram, so that they become useful information in the determination of the log.Interval velocity logs are derived from the acoustic impedance logs. The results can be displayed in various forms, including detailed velocity logs, and colour-coded log 'sections' to match with the seismic section. Several examples of such results are presented.The G-LOG process is a revolutionary technique of subsurface modelling, and the logs it provides are strong indicators of subsurface lithology and will be an important tool in the evaluation and re-evaluation of potential hydrocarbon-bearing prospects.*Trademark of G.S.I.

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA185-WA200
Author(s):  
Yuqing Chen ◽  
Gerard T. Schuster

We present a wave-equation inversion method that inverts skeletonized seismic data for the subsurface velocity model. The skeletonized representation of the seismic traces consists of the low-rank latent-space variables predicted by a well-trained autoencoder neural network. The input to the autoencoder consists of seismic traces, and the implicit function theorem is used to determine the Fréchet derivative, i.e., the perturbation of the skeletonized data with respect to the velocity perturbation. The gradient is computed by migrating the shifted observed traces weighted by the skeletonized data residual, and the final velocity model is the one that best predicts the observed latent-space parameters. We denote this as inversion by Newtonian machine learning (NML) because it inverts for the model parameters by combining the forward and backward modeling of Newtonian wave propagation with the dimensional reduction capability of machine learning. Empirical results suggest that inversion by NML can sometimes mitigate the cycle-skipping problem of conventional full-waveform inversion (FWI). Numerical tests with synthetic and field data demonstrate the success of NML inversion in recovering a low-wavenumber approximation to the subsurface velocity model. The advantage of this method over other skeletonized data methods is that no manual picking of important features is required because the skeletal data are automatically selected by the autoencoder. The disadvantage is that the inverted velocity model has less resolution compared with the FWI result, but it can serve as a good initial model for FWI. Our most significant contribution is that we provide a general framework for using wave-equation inversion to invert skeletal data generated by any type of neural network. In other words, we have combined the deterministic modeling of Newtonian physics and the pattern matching capabilities of machine learning to invert seismic data by NML.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R11-R19 ◽  
Author(s):  
Ronghuo Dai ◽  
Cheng Yin ◽  
Nueraili Zaman ◽  
Fanchang Zhang

Poststack seismic impedance inversion is an effective approach for reservoir prediction. Due to the sensitivity to noise and the oscillation near the bed boundary, Gaussian distribution constrained seismic inversion is unfavorable to delineate the subtle-reservoir and small-scale geologic features. To overcome this shortcoming, we have developed a new method that incorporates a priori knowledge in the seismic inversion through a preconditioning impedance model using the adaptive edge-preserving smoothing (Ad-EPS) filter. The Ad-EPS filter preconditioned impedance model for a blocky solution makes the formation interfaces and geologic edges more precise and sharper in the inverted impedance results and keeps the inversion procedure robust even if random noise exists in the seismic data. Furthermore, compared with the conventional EPS filter, the Ad-EPS filter is able to resolve thick and thin geologic features through window size scanning, which is used to find the best-fitting window size for each sample to be filtered. The results of numerical examples and real seismic data test indicate that our inversion method can suppress noise to obtain a “blocky” inversion result and preserve small geologic features.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB53-WB65 ◽  
Author(s):  
Huyen Bui ◽  
Jennifer Graham ◽  
Shantanu Kumar Singh ◽  
Fred Snyder ◽  
Martiris Smith

One of the main goals of seismic inversion is to obtain high-resolution relative and absolute impedance for reservoir properties prediction. We aim to study whether the results from seismic inversion of subsalt data are sufficiently robust for reliable reservoir characterization. Approximately [Formula: see text] of poststack, wide-azimuth, anisotropic (vertical transverse isotropic) wave-equation migration seismic data from 50 Outer Continental Shelf blocks in the Green Canyon area of the Gulf of Mexico were inverted in this study. A total of four subsalt wells and four subsalt seismic interpreted horizons were used in the inversion process, and one of the wells was used for a blind test. Our poststack inversion method used an iterative discrete spike inversion method, based on the combination of space-adaptive wavelet processing to invert for relative acoustic impedance. Next, the dips were estimated from seismic data and converted to a horizon-like layer sequence field that was used as one of the inputs into the low-frequency model. The background model was generated by incorporating the well velocities, seismic velocity, seismic interpreted horizons, and the previously derived layer sequence field in the low-frequency model. Then, the relative acoustic impedance volume was scaled by adding the low-frequency model to match the calculated acoustic impedance logs from the wells for absolute acoustic impedance. Finally, the geological information and rock physics data were incorporated into the reservoir properties assessment for sand/shale prediction in two main target reservoirs in the Miocene and Wilcox formations. Overall, the poststack inversion results and the sand/shale prediction showed good ties at the well locations. This was clearly demonstrated in the blind test well. Hence, incorporating rock physics and geology enables poststack inversion in subsalt areas.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC27-WCC36 ◽  
Author(s):  
Yu Zhang ◽  
Daoliu Wang

We propose a new wave-equation inversion method that mainly depends on the traveltime information of the recorded seismic data. Unlike the conventional method, we first apply a [Formula: see text] transform to the seismic data to form the delayed-shot seismic record, back propagate the transformed data, and then invert the velocity model by maximizing the wavefield energy around the shooting time at the source locations. Data fitting is not enforced during the inversion, so the optimized velocity model is obtained by best focusing the source energy after a back propagation. Therefore, inversion accuracy depends only on the traveltime information embedded in the seismic data. This method may overcome some practical issues of waveform inversion; in particular, it relaxes the dependency of the seismic data amplitudes and the source wavelet.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR187-MR198 ◽  
Author(s):  
Yi Shen ◽  
Jack Dvorkin ◽  
Yunyue Li

Our goal is to accurately estimate attenuation from seismic data using model regularization in the seismic inversion workflow. One way to achieve this goal is by finding an analytical relation linking [Formula: see text] to [Formula: see text]. We derive an approximate closed-form solution relating [Formula: see text] to [Formula: see text] using rock-physics modeling. This relation is tested on well data from a clean clastic gas reservoir, of which the [Formula: see text] values are computed from the log data. Next, we create a 2D synthetic gas-reservoir section populated with [Formula: see text] and [Formula: see text] and generate respective synthetic seismograms. Now, the goal is to invert this synthetic seismic section for [Formula: see text]. If we use standard seismic inversion based solely on seismic data, the inverted attenuation model has low resolution and incorrect positioning, and it is distorted. However, adding our relation between velocity and attenuation, we obtain an attenuation model very close to the original section. This method is tested on a 2D field seismic data set from Gulf of Mexico. The resulting [Formula: see text] model matches the geologic shape of an absorption body interpreted from the seismic section. Using this [Formula: see text] model in seismic migration, we make the seismic events below the high-absorption layer clearly visible, with improved frequency content and coherency of the events.


Geophysics ◽  
1967 ◽  
Vol 32 (5) ◽  
pp. 801-818 ◽  
Author(s):  
John C. Fitton ◽  
Milton B. Dobrin

Although the use of optical techniques for enhancing seismic data has become well established, the applicability of these techniques to seismic interpretation is not so widely recognized. Optical processing is ideally suited for use as a direct aid to interpretation because of the precision with which filtering can be controlled and because of the flexibility made possible by the instantaneous visual presentation of the filtered data. Frequency relationships in seismic data have great value in interpretation, and optical techniques are particularly suitable for bringing out such relationships. The one‐dimensional optical transform displays a channel‐by‐channel spectrum of a seismic section from which useful geological information can be inferred. On such transforms significant effects can often be brought out which are not discernible on the corresponding record sections. Reefs, for example, often cause a thinning of overlying formations which gives rise to a high‐frequency anomaly on the transform, even at levels so shallow in the section that no evidence for reef effects is apparent to the eye on the original records. Characteristic frequency anomalies can also be observed over faults. One‐dimensional transforms from sections made over features of both kinds show diagnostic patterns that can be used as a basis for detection. The sharp cutoffs and flexibility available in optical filters make it possible to discriminate between conflicting events on record sections by frequency filtering alone. With proper monitoring, one can select those cutoff frequencies which bring out events that appear geologically most plausible. Multiple reflections, for example, can often be eliminated by frequency discrimination once the geophysicist identifies the primary reflections on the monitor. Often seismic records are discarded as useless, when in reality they are simply too complex to interpret because a large number of events, all potentially significant, overlap. Such events can be sorted out for possible use by optical filtering and concurrent monitoring. No other processing technique allows the geophysicist to do this so easily.


Geophysics ◽  
1986 ◽  
Vol 51 (12) ◽  
pp. 2177-2184 ◽  
Author(s):  
J. R. Berryhill ◽  
Y. C. Kim

This paper discusses a two‐step method for predicting and attenuating multiple and peg‐leg reflections in unstacked seismic data. In the first step, an (observed) seismic record is extrapolated through a round‐trip traversal of the water layer, thus creating an accurate prediction of all possible multiples. In the second step, the record containing the predicted multiples is compared with and subtracted from the original. The wave‐equation method employed to predict the multiples takes accurate account of sea‐floor topography and so requires a precise water‐bottom profile as part of the input. Information about the subsurface below the sea floor is not required. The arrival times of multiple reflections are reproduced precisely, although the amplitudes are not accurate, and the sea floor is treated as a perfect reflector. The comparison step detects the similarities between the computed multiples and the original data, and estimates a transfer function to equalize the amplitudes and account for any change in waveform caused by the sea‐floor reflector. This two‐step wave‐equation method is effective even for dipping sea floors and dipping subsurface reflectors. It does not depend upon any assumed periodicity in the data or upon any difference in stacking velocity between primaries and multiples. Thus it is complementary to the less specialized methods of multiple suppression.


1999 ◽  
Vol 2 (04) ◽  
pp. 334-340 ◽  
Author(s):  
Philippe Lamy ◽  
P.A. Swaby ◽  
P.S. Rowbotham ◽  
Olivier Dubrule ◽  
A. Haas

Summary The methodology presented in this paper incorporates seismic data, geological knowledge and well logs to produce models of reservoir parameters and uncertainties associated with them. A three-dimensional (3D) seismic dataset is inverted within a geological and stratigraphic model using the geostatistical inversion technique. Several reservoir-scale acoustic impedance blocks are obtained and quantification of uncertainty is determined by computing statistics on these 3D blocks. Combining these statistics with the kriging of the reservoir parameter well logs allows the transformation of impedances into reservoir parameters. This combination is similar to performing a collocated cokriging of the acoustic impedances. Introduction Our geostatistical inversion approach is used to invert seismic traces within a geological and stratigraphic model. At each seismic trace location, a large number of acoustic impedance (AI) traces are generated by conditional simulation, and a local objective function is minimized to find the trace that best fits the actual seismic trace. Several three-dimensional (3D) AI realizations are obtained, all of which are constrained by both the well logs and seismic data. Statistics are then computed in each stratigraphic cell of the 3D results to quantify the nonuniqueness of the solution and to summarize the information provided by individual realizations. Finally, AI are transformed into other reservoir parameters such as Vshale through a statistical petrophysical relationship. This transformation is used to map Vshale between wells, by combining information derived from Vshale logs with information derived from AI blocks. The final block(s) can then be mapped from the time to the depth domain and used for building the flow simulation models or for defining reservoir characterization maps (e.g., net to gross, hydrocarbon pore volume). We illustrate the geostatistical inversion method with results from an actual case study. The construction of the a-priori model in time, the inversion, and the final reservoir parameters in depth are described. These results show the benefit of a multidisciplinary approach, and illustrate how the geostatistical inversion method provides clear quantification of uncertainties affecting the modeling of reservoir properties between wells. Methodology The Geostatistical Inversion Approach. This methodology was introduced by Bortoli et al.1 and Haas and Dubrule.2 It is also discussed in Dubrule et al.3 and Rowbotham et al.4 Its application on a synthetic case is described in Dubrule et al.5 A brief review of the method will be presented here, emphasizing how seismic data and well logs are incorporated into the inversion process. The first step is to build a geological model of the reservoir in seismic time. Surfaces are derived from sets of picks defining the interpreted seismic. These surfaces are important sincethey delineate the main layers of the reservoir and, as we will see below, the statistical model associated with these layers, andthey control the 3D stratigraphic grid construction. The structure of this grid (onlap, eroded, or proportional) depends on the geological context. The maximum vertical discretization may be higher than that of the seismic, typically from 1 to 4 milliseconds. The horizontal discretization is equal to the number of seismic traces to invert in each direction (one trace per cell in map view). Raw AI logs at the wells have to be located within this stratigraphic grid since they will be used as conditioning data during the inversion process. It is essential that well logs should be properly calibrated with the seismic. This implies that a representative seismic wavelet has been matched to the wells, by comparing the convolved reflectivity well log response with the seismic response at the same location. This issue is described more fully in Rowbotham et al.4 Geostatistical parameters are determined by using both the wells and seismic data. Lateral variograms are computed from the seismic mapped into the stratigraphic grid. Well logs are used to both give an a priori model (AI mean and standard deviation) per stratum and to compute vertical variograms. The geostatistical inversion process can then be started. A random path is followed by the simulation procedure, and at each randomly drawn trace location AI trace values can be generated by sequential Gaussian simulation (SGS). A large number of AI traces are generated at the same location and the corresponding reflectivities are calculated. After convolution with the wavelet, the AI trace that leads to the best fit with the actual seismic is kept and merged with the wells and the previously simulated AI traces. The 3D block is therefore filled sequentially, trace after trace (see Fig. 1). It is possible to ignore the seismic data in the simulation process by generating only one trace at any (X, Y) location and automatically keeping it as "the best one." In this case, realizations are only constrained by the wells and the geostatistical model (a-priori parameters and variograms).


2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. O21-O37 ◽  
Author(s):  
Dario Grana ◽  
Ernesto Della Rossa

A joint estimation of petrophysical properties is proposed that combines statistical rock physics and Bayesian seismic inversion. Because elastic attributes are correlated with petrophysical variables (effective porosity, clay content, and water saturation) and this physical link is associated with uncertainties, the petrophysical-properties estimation from seismic data can be seen as a Bayesian inversion problem. The purpose of this work was to develop a strategy for estimating the probability distributions of petrophysical parameters and litho-fluid classes from seismics. Estimation of reservoir properties and the associated uncertainty was performed in three steps: linearized seismic inversion to estimate the probabilities of elastic parameters, probabilistic upscaling to include the scale-changes effect, and petrophysical inversion to estimate the probabilities of petrophysical variables andlitho-fluid classes. Rock-physics equations provide the linkbetween reservoir properties and velocities, and linearized seismic modeling connects velocities and density to seismic amplitude. A full Bayesian approach was adopted to propagate uncertainty from seismics to petrophysics in an integrated framework that takes into account different sources of uncertainty: heterogeneity of the real data, approximation of physical models, measurement errors, and scale changes. The method has been tested, as a feasibility step, on real well data and synthetic seismic data to show reliable propagation of the uncertainty through the three different steps and to compare two statistical approaches: parametric and nonparametric. Application to a real reservoir study (including data from two wells and partially stacked seismic volumes) has provided as a main result the probability densities of petrophysical properties and litho-fluid classes. It demonstrated the applicability of the proposed inversion method.


Sign in / Sign up

Export Citation Format

Share Document