HYDRODYNAMICS AND HYDROCARBON MIGRATION — A MODEL FOR THE EROMANGA BASIN

1982 ◽  
Vol 22 (1) ◽  
pp. 227
Author(s):  
O. J. W. Bowering

Recent oil discoveries in the Eromanga Basin in sediments ranging in age from Early Jurassic to Early Cretaceous provide strong evidence for an oil source within the basin.A recent study of the thermal history of Eromanga Basin sediments within the licence areas of Delhi Petroleum Pty Ltd and Santos Limited indicates that generation and primary migration of oil within the basin occurred within a period ranging approximately from late Cretaceous to Early Tertiary and that these events pre-dated the artesian system, which developed in Plio-Pleistocene times. Generation is believed to have occurred within deeper basin depocentres; migration toward the shallower marginal areas followed.The present artesian system is unlikely to have flushed oil out of existing traps. However, there is evidence that the artesian flow was stronger previously, and may have influenced secondary migration of oil. A mound spring has furnished evidence of possible migration to the western margin of the basin.


1991 ◽  
Vol 28 (6) ◽  
pp. 899-911 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett ◽  
David A. Brew

U–Pb geochronologic studies demonstrate that steeply dipping, sheetlike tonalitic plutons along the western margin of the northern Coast Mountains batholith were emplaced between ~83 and ~57 (perhaps ~55) Ma. Less elongate tonalitic–granodioritic bodies in central portions of the batholith yield ages of 59–58 Ma, coeval with younger phases of the tonalitic sheets. Large granite–granodiorite bodies in central and eastern portions of the batholith were emplaced at 51–48 Ma. Trends in ages suggest that the tonalitic bodies generally become younger southeastward and that, at the latitude of Juneau, plutonism migrated northeastward across the batholith at ~0.9 km/Ma. Variations in the age, shape, location, and degree of fabric development among the various plutons indicate that Late Cretaceous – Paleocene tonalitic bodies were emplaced into a steeply dipping, dip-slip shear zone that was active along the western margin of the batholith. Postkinematic Eocene plutons were emplaced at shallow crustal levels. Inherited zircon components in these plutons range in age from mid-Paleozoic to Early Proterozoic and are coeval with detrital zircons in adjacent metasedimentary rocks. These old zircons, combined with evolved Nd isotopic signatures for most plutons, record assimilation of continental crustal or supracrustal rocks during the generation and (or) ascent of the plutons.



1985 ◽  
Vol 22 (2) ◽  
pp. 154-174 ◽  
Author(s):  
Karen L. Kleinspehn

The Mesozoic Tyaughton–Methow Basin straddles the Fraser–Yalakom–Pasayten – Straight Creek (FYPSC) strike-slip fault zone between six tectono-stratigraphic terranes in southwestern British Columbia. Data from Hauterivian–Cenomanian basin fill provide constraints for reconstruction of fault displacement and paleogeography.The Early Cretaceous eastern margin of the basin was a region of uplifted Jurassic plutons and active intermediate volcanism. Detritus shed southwestward from that margin was deposited as the marine Jackass Mountain Group. Albian inner to mid-fan facies of the Jackass Mountain Group can be correlated across the Yalakom Fault, suggesting 150 ± 25 km of post- Albian dextral offset. Deposits of the Jackass Mountain Group overlap the major strike- slip zone (FYPSC). If that zone represents the eastern boundary of the tectono-stratigraphic terrane, Wrangellia, then accretion of Wrangellia to terranes to the east occurred before late Early Cretaceous time.The western margin of the basin first became prominent with Cenomanian uplift of the Coast Mountain suprastructure. Uplift is recorded by dispersal patterns of the volcaniclastic Kingsvale Group southwest of the Yalakom Fault.Reversing 110 km of Late Cretaceous – early Tertiary dextral motion on the Fraser – Straight Creek Fault followed by 150 km of Cenomanian – Turonian motion on the Yalakom – Ross Lake Fault restores the basin to a reasonable depositional configuration.



1991 ◽  
Vol 333 (1267) ◽  
pp. 187-195 ◽  

The Cretaceous-Paleogene history of plants and insects reveals a discernible pattern in the evolution of floral character complexes and insects. Earliest Cretaceous flowers were small apetalous magnoliids with few parts. They co-occurred with a greater variety of anthophilous insects than has previously been supposed, and the idea that Coleoptera were the principal early insect pollinators is in need of review. By the mid-Cretaceous rosid flowers are known with well-developed corollas and the Rosidae are diverse by the late Cretaceous. The more derived asterid floral types are not firmly established until the Tertiary. Nectaries are present in many of the late Cretaceous rosids and may signal the beginning of the most significant evolutionary interaction between H ym enoptera and angiosperms. Advanced floral types in M aastrichtian and early Tertiary deposits are consistent with the appearance of meliponine Apideae (Stingless honeybees) in the late Cretaceous.





1993 ◽  
Vol 6 ◽  
pp. 210-227
Author(s):  
Kirk R. Johnson

In this paper, I discuss issues of time resolution and time-averaging in fossil megafloras from Late Cretaceous (Cenomanian) to Oligocene age. The sites are predominantly from North America with some examples from other continents. The purpose of this paper is to explicate the methods used to resolve the age and duration of fossil floras and to discuss the uncertainties associated with these methods. The age of floras is most important for their evolutionary, paleoclimatic and paleoaltitudinal applications, while the duration of floras (here defined as the time represented by individual assemblages, florules, or quarries) is critical for paleoecological and paleoenvironmental applications. Levels of time resolution of both the age and the duration of fossil floras are subject to time-averaging. Behrensmeyer et al. (1992, p. 75) have defined two types of time-averaging: analytical time-averaging which is artificial and results from techniques of analysis and taphonomic time-averaging which is natural and results from the taphonomic history of the assemblage.



1985 ◽  
Vol 25 (1) ◽  
pp. 62 ◽  
Author(s):  
P.W. Vincent I.R. Mortimore ◽  
D.M. McKirdy

The northern part of the Naccowlah Block, situated in the southeastern part of the Authority to Prospect 259P in southwestern Queensland, is a major Eromanga Basin hydrocarbon province. The Hutton Sandstone is the main reservoir but hydrocarbons have been encountered at several levels within the Jurassic-Cretaceous sequence. In contrast, the underlying Cooper Basin sequence is generally unproductive in the Naccowlah Block although gas was discovered in the Permian at Naccowlah South 1. Oil and gas discoveries within the Eromanga Basin sequence are confined to the Naccowlah-Jackson Trend. This trend forms a prominent high separating the deep Nappamerri Trough from the shallower, more stable northern part of the Cooper Basin.The Murta Member is mature for initial oil generation along the Naccowlah-Jackson Trend and has sourced the small oil accumulations within this unit and the underlying Namur Sandstone Member. The Birkhead Formation is a good source unit in this area with lesser oil source potential also evident in the Westbourne Formation and 'basal Jurassic'. Source quality and maturation considerations imply that much of the oil discovered in Jurassic reservoirs along the Naccowlah-Jackson Trend was generated from more mature Jurassic source beds in the Nappamerri Trough area to the southwest. Maturation modelling of this deeper section suggests that hydrocarbon generation from Jurassic source units commenced in the Early Tertiary. Significant oil generation and migration has therefore occurred since the period of major structural development of the Naccowlah-Jackson Trend in the Early Tertiary. This trend, however, has long been a major focus for hydrocarbon migration paths out of the Nappamerri Trough as a result of intermittent structuring during the Mesozoic. Gas reservoired in Jurassic sandstones at Chookoo has been generated from more mature Jurassic source rocks in the deeper parts of the Nappamerri Trough.Permian sediments in the Nappamerri Trough area are overmature for oil generation and are gas prone. Gas generated in this area has charged the lean Permian gas Field at Naccowlah South, along the Wackett-Naccowlah- Jackson Trend. North of this trend Permian source rocks are mainly gas prone but more favourable levels of maturity allow the accumulation of some gas liquids and oil. However, geological and geochemical evidence suggests that Permian sediments did not source the oil found in Jurassic-Cretaceous reservoirs in the Jackson- Naccowlah area.



1998 ◽  
Vol 155 (2) ◽  
pp. 255-268 ◽  
Author(s):  
JOE J. McCARRON ◽  
ROBERT D. LARTER


2000 ◽  
Vol 49 (4) ◽  
pp. 215-238 ◽  
Author(s):  
Hanan Ginat ◽  
Yoav Avni ◽  
Zvi Garfunkel ◽  
Hanan Ginata ◽  
Yosef Bartov


Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.



Zootaxa ◽  
2005 ◽  
Vol 932 (1) ◽  
pp. 1 ◽  
Author(s):  
HARRY M. SAVAGE ◽  
R. WILLS FLOWERS ◽  
WENDY PORRAS V.

A new genus, Tikuna, is described based on recent collections of adults and nymphs of Choroterpes atramentum Traver from western Costa Rica. All recent collections are from streams on or near the Nicoya Complex, the oldest geological formation in Lower Central America. Tikuna belongs to a lineage of South American Atalophlebiinae (Leptophlebiidae: Ephemeroptera) whose origin is hypothesized to have been in the late Cretaceous–early Tertiary. Some implications of the distribution of Tikuna for theories on the origin of Costa Rica’s biota are discussed.



Sign in / Sign up

Export Citation Format

Share Document