Evaluation of green tea by-product and green tea plus probiotics on the growth performance, meat quality and immunity of growing–finishing pigs

2012 ◽  
Vol 52 (9) ◽  
pp. 857 ◽  
Author(s):  
M. E. Hossain ◽  
S. Y. Ko ◽  
K. W. Park ◽  
J. D. Firman ◽  
C. J. Yang

The present study was conducted to evaluate the effects of green tea by-product (GTB) and green tea plus probiotics (GT+P) on the growth performance, carcass characteristics, meat quality, blood parameters and immunity of growing–finishing pigs. In total, 80 crossbreed growing pigs were assigned to receive four dietary treatments for a period of 8 weeks. The dietary treatments were a basal diet (control), basal diet supplemented with 0.003% chlortetracycline (antibiotic), basal diet with 0.5% GTB (GTB) and basal diet containing 0.5% GT+P (GT+P). The results of our study indicated that bodyweight gain increased (P < 0.05) in response to the addition of GT+P to the basal diet. Crude protein and crude ash content, and shear values of loin meat were significantly (P < 0.05) increased in the GT+P group, although moisture and juiciness were decreased (P < 0.05). The GTB group had higher (P < 0.05) serum glucose concentrations, whereas the GT+P exhibited lower (P < 0.05) insulin concentrations. The values of thiobarbituric acid-reactive substances of fresh loin meat and meat that had been preserved for 1 week were lower (P < 0.05) in the GT+P group than those of the control and GTB groups. The growth of spleen cells incubated in concanavalin A (Con A) and lipopolysaccharide (LPS) medium was statistically higher (P < 0.05) for the GT+P group than for the GTB or antibiotic group. IL-6 and TNF-α production by spleen cells induced by Con A and LPS was increased in the GTB and GT+P group (P < 0.05) compared with the antibiotic group. Taken together, the results of the present study indicated that GT+P exerts positive effects on weight gain, meat composition, blood parameters and immunity in pigs, and could be used as an alternative to antibiotics for growing–finishing pig feeds.

Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 840 ◽  
Author(s):  
Weikang Wang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
Zhiqing Huang ◽  
Yuheng Luo ◽  
...  

Inulin is one of the commercially feasible dietary fibers that has been implicated in regulating the gut health and metabolism of animals. This experiment was conducted to investigate the effect of dietary inulin supplementation on growth performance and meat quality in growing–finishing pigs. Thirty-six Duroc × Landrace × Yorkshire White growing barrows (22.0 ± 1.0 kg) were randomly allocated to two dietary treatments consisting of a basal control diet (CON) or basal diet supplemented with 0.5% inulin (INU). Results showed that inulin supplementation tended to increase the average daily gain (ADG) at the fattening stage (0.05 < p < 0.10). Inulin significantly increased the dressing percentage (p < 0.05) and tended to increase the loin-eye area. The serum concentrations of insulin and IGF-I were significantly higher (p < 0.05) in the INU group than in the CON group. Moreover, inulin supplementation significantly elevated the expression level of myosin heavy chain II b (MyHC IIb) in the longissimus dorsi (p < 0.05). Inulin significantly upregulated the expression of mammalian rapamycin target protein (mTOR) but decreased (p < 0.05) the expression level of muscle-specific ubiquitin ligase MuRF-1. These results show the beneficial effect of inulin supplementation on the growth performance and carcass traits in growing–finishing pigs, and will also facilitate the application of inulin in swine production.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 375
Author(s):  
Sheena Kim ◽  
Jin Ho Cho ◽  
Younghoon Kim ◽  
Hyeun Bum Kim ◽  
Minho Song

The present study was conducted to evaluate the effects of replacing corn with brown rice on growth performance, nutrient digestibility, carcass characteristics, and gut microbiota of growing and finishing pigs. A total of 100 growing pigs (23.80 ± 2.96 kg BW; 10 weeks of age) were randomly allotted to 4 dietary treatments (5 pigs/pen; 5 replicates/treatment) in a randomized complete block design (block = BW) as follows: corn-soybean meal basal diet (CON) and replacing corn with 50% (GBR50), 75% (GBR75), and 100% (GBR100) of ground brown rice. Each trial phase was for 6 weeks. During the growing period, there were no differences on growth performance and nutrient digestibility among dietary treatments. Similarly, no differences were found on growth performance, nutrient digestibility, and carcass characteristics of pigs during the finishing period among dietary treatments. As a result of the beta diversity analysis, microbial populations were not clustered between CON and GBR100 during the growing phase, but clustered into two distinct groups of CON and GBR100 during the finishing phase. In conclusion, brown rice can be added to the diets of growing-finishing pigs by replacing corn up to 100% without negatively affecting growth performance of the pigs; additionally, this may have an effect on changes in pig intestinal microbiota if continued for a long time.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 195-196
Author(s):  
Vetriselvi Sampath ◽  
Hyun Ju Park ◽  
Inho Kim ◽  
Huan Wang ◽  
Raihanul Hoque

Abstract The study was conducted to assess the effect of black pepper (BP) supplementation on the growth performance, nutrient digestibility, fecal microbial, fecal gas emission, and meat quality of finishing pigs. A total of 180 crossbred [(Landrace × Yorkshire) × Duroc] finishing pigs with average initial body weight (BW) of 53.72 ± 1.42 kg were used in 10-week trial and allotted to 6 dietary treatments (6 replications pens/treatment with 5 pigs per pen). The dietary treatments were: CON (basal diet), TRT1- CON + 0.025% BP, TRT2- CON + 0.05% BP, TRT3- CON + 0.1% BP, TRT4- CON + 0.2% BP, TRT5- CON + 0.4% BP. A linear increase (P = 0.0380, 0.0061) in body weight gain (BWG) and average daily gain (ADG) were observed respectively, during the overall trial in pigs fed BP supplemented diet compared to control. The dietary supplementation of BP showed a linear increase (P=0.0065) in gain and feed ratio (G: F) at week 10. However, there were no significant results observed on average daily feed intake (ADFI) during the overall experiment. The total tract digestibility of dry matter (DM) was linearly improved (P=0.0531) in BP treatment groups compared to control. In addition, BP diet supplementation had linearly increased fecal Lactobacillus counts (P=0.0482) and decreased E. coli counts (P=0.0306) in pigs at week 10. Furthermore, NH3, methyl mercaptans, and acetic acid was linearly decreased (P=0.0227, 0.0555,0.0541) in pigs fed BP supplementation compare to control. The inclusion of BP supplementation in pigs diet had linearly increased (P=0.0146) the backfat thickness at week 10. Thus, we concluded that BP supplementation had positively enhanced the growth performance, nutrient digestibility, fecal microbial, fecal gas emission, and meat quality of finishing pigs.


2020 ◽  
Vol 100 (1) ◽  
pp. 133-139
Author(s):  
Xiang Ao ◽  
Yan Lei ◽  
In Ho Kim

This study was conducted to evaluate the effect of supplementation of different flavors (apple and anise) on growth performance, nutrient digestibility, blood profiles, and carcass quality in growing–finishing pigs. A total of 96 growing pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 28.2 ± 0.7 kg were randomly assigned to one of the following three treatments: (1) CON, basal diet; (2) APF, basal diet + 0.05% apple flavor; (3) ANF, basal diet + 0.05% anise flavor, according to their BW and sex in this 15 wk experiment. There were eight replications (pens) per treatment and four pigs per pen (two barrows and two gilts). During week 0–5, pigs fed ANF diets had greater (p < 0.05) average daily gain (ADG) and average daily feed intake than those fed CON and APF diets. Dietary ANF treatment increased (p < 0.05) ADG during 0–15 wk compared with CON treatment. At the end of 5 wk, the apparent total tract digestibility of nitrogen in ANF treatment was improved (p < 0.05) compared with that in CON treatment. Dietary treatments did not affect the studied traits of carcass and meat quality. The inclusion of anise flavor increased ADG, but apple flavor had no effect on growth performance in growing–finishing pigs.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 405-407
Author(s):  
Koo Deokho ◽  
Mohankumar Thamaraikannan ◽  
Madesh Muniyappan ◽  
Song Junho ◽  
Ahn Je Min ◽  
...  

Abstract Minerals enhance the digestive and bio-synthesis process and growth of animals. Nano-minerals are considered to be more efficient in growth, immunomodulation, bactericidal effects than regular products. Also, they are needed in a lower dose. Sulfur is an essential part of many enzymes and antioxidant molecules like glutathione and thioredoxin. Some sulfur containing compounds can efficiently form a line of defense against reactive oxygen and nitrogen species. This study aimed to evaluate the effects of Detoxified nano-Sulfur Dispersion (DSD) on growth performance, fecal score, fecal microbial, gas emissions, blood profile, nutrient digestibility and meat quality in finishing pigs. A total of 160 pigs with an initial body weight of 54.90 ± 5.10 kg were randomly assigned to 2 treatments comprising of basal diet and basal diet with 10ppm DSD. All data were statically analyzed by T-test using the SAS program as a randomized complete block design, with the pen serving as an experimental unit. During the 10-week trial, there were no differences (P &gt; 0.05) in body weight (BW), average daily gain (ADG), average daily feed intake (ADFI) and gain to feed ratio (G:F) between the control and DSD groups. Also, the fecal score, fecal microbiota, gas emission were not affected (P &gt; 0.05) by DSD diet. Dietary inclusion of DSD tended (P &lt; 0.10) to increase water holding capacity and decrease cooking loss and drip loss. At week 5, serum concentrations of glucose, calcium, total cholesterol, high-density level were increased, and triglyceride concentration was significantly (P &lt; 0.05) reduced in pigs fed with DSD than control diets. In summary, the inclusion of dietary DSD in the finishing pig diet improved serum Ca, glucose concentrations and lipid profiles. It also improved some meat quality traits, indicating its importance in improving the health status of animals.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1965
Author(s):  
Vetriselvi Sampath ◽  
Sureshkumar Shanmugam ◽  
Jae Hong Park ◽  
In Ho Kim

The study was conducted to assess the effect of black pepper extract (BPE) supplementation on the growth performance, nutrient digestibility, fecal microbial, fecal gas emission, and meat quality of finishing pigs. A total of 180 crossbred [(Landrace × Yorkshire) × Duroc] finishing pigs with average initial body weight (BW) of 53.7 ± 1.42 kg were used in 10-week trial and allotted to 6 dietary treatments (6 replications pens/treatment with 5 pigs per pen). The dietary treatments were: CON (basal diet), TRT1-CON + 0.025% BPE, TRT2-CON + 0.05% BPE, TRT3-CON + 0.1% BPE, TRT4-CON + 0.2% BPE, TRT5-CON + 0.4% BPE. Linear increase in body weight gain (BWG) (p = 0.038, 0.006) and average daily gain (ADG) were observed (p = 0.035, 0.007,and 0.006 respectively), during the overall trial in pigs fed increasing levels of BPE in supplemented diet compared to control. The dietary supplementation of BPE showed a linear increase (p = 0.007) in gain-to-feed ratio (G:F) at week 10. However, there were no significant results observed on average daily feed intake (ADFI) during the overall experiment. The total tract digestibility of dry matter (DM) was linearly improved (p = 0.053) with graded levels of BPE. In addition, BPE diet supplementation had linearly increased fecal Lactobacillus counts (p = 0.048) and decreased Escherichia coli counts (p = 0.031) in pigs at week 10. Furthermore, NH3, methyl mercaptans, and acetic acid was linearly decreased (p = 0.023, 0.056, 0.054) in pigs fed graded level of BPE supplementation. The inclusion of BPE in pigs’ diet had linearly increased (p = 0.015) backfat thickness at week 10. Thus, we concluded that BPE supplementation had positively enhanced the growth performance, nutrient digestibility, fecal microbial, fecal gas emission, and meat quality of finishing pigs.


Author(s):  
Thamaraikannan Mohankumar ◽  
Yongmin Kim ◽  
I.H. Kim

A ten-week experimental trial was carried out to determine the effect of - dietary inclusion of Achyranthes japonica extract (AJE) on finishing pigs overall performance. A total of 150 finishing pigs with initial body weight (BW) of 54.17 ± 2.27 kg were randomly allocated to 5 dietary treatments. The dietary treatments were CON (Basal diet), TRT1 (Basal diet + 0.025% AJE), TRT2 (Basal diet + 0.05% AJE), TRT3 (Basal diet + 0.1% AJE), TRT4 (Basal diet + 0.2% AJE). Dietary AJE supplementation linearly increased BW, average daily gain (ADG), and gain to feed ratio (G:F) during week 5. At week 10 and overall experiment, there was tendency for linear increase in BW, ADG and ADFI. Dietary supplementation of AJE failed to show significant effects on nutrient digestibility, fecal microbiota, meat quality, and fecal gas emission. The dietary supplementation of AJE showed a linear increase in the backfat thickness at week 10 and there was no significant difference observed on the lean meat percentage. In summary, Achyranthes japonica extract supplementation diet had a beneficial effect on the growth performance and backfat thickness and also no effects on nutrient digestibility and fecal microbiota of the finishing pigs.


Sign in / Sign up

Export Citation Format

Share Document